【物理化学学报】doi: 10.1016/j.actphy.2025.100084
光催化分解水产氢具有广阔的应用前景。然而,单一光催化剂由于光生电子与空穴易复合,导致光催化产氢效率较低,严重制约了该技术的实际应用。构建异质结是克服这些缺点的有效策略,最近S型异质结脱颖而出,显示出了高效的促进电子和空穴分离的能力,同时最大限度地提高光催化剂的氧化还原能力。其中,基于聚合物的S型光催化剂正在兴起,但无机-有机S型异质结中的载流子动力学仍有待阐明。在本工作中,我们制备了由共轭聚合物双氧硫芴苯并二噻吩二酮(dibenzothiophene-S, S-dioxide-alt-benzodithiophene, DBTSO-BDTO)和硫化镉(CdS)组成的S型异质结,并研究了其光催化制氢的性能和界面电荷传输机制。利用原位辐照X射线光电子能谱验证了S型电子转移机理,并利用飞秒瞬态吸收光谱深入分析了S型异质结中载流子的动力学,证实有大量光生电子发生了界面电荷转移。由于S型异质结对载流子效率的提高和氧化还原能力的增强,复合材料的性能超过了DBTSO-BDTO和CdS,并且最优化复合材料的析氢速率达到3313 μmol·h−1·g−1,约为纯CdS的3倍。本工作为S型异质结的电子转移机制提供了新的视角,并可指导用于太阳能燃料生产的聚合物基光催化剂的开发。
【物理化学学报】doi: 10.3866/PKU.WHXB202406027
光催化技术利用清洁、无污染的太阳能合成过氧化氢(H2O2)。本研究通过铃木-宫浦反应和水热法合成了ZnO/PBD S型异质结复合材料,其特点是在供体-受体共轭聚合物(PBD)基底上生长ZnO纳米颗粒。最佳ZnO/PBD复合材料的产H2O2效率为4.07 mmol∙g-1∙h-1,是原始ZnO的5.4倍。该性能的显著提高归功于S型异质结的形成。紫外可见漫反射吸收光谱和原位光照X射线光电子能谱证实了S型异质结的成功构建。稳态光致发光和飞秒瞬态吸收(fs-TA)光谱确定并验证了ZnO中缺陷态的存在。这些缺陷态会捕获光生电子,从而对光催化反应产生不利影响。然而,S型异质结有效地促进了电子的分离和转移,从而缓解了这一问题。通过拟合fs-TA衰减动力学曲线确定的这些缺陷态中光生电子的寿命,进一步证明了S型异质结中的载流子转移机制。该工作介绍了一种利用fs-TA光谱研究有机/无机S型异质结的新方法。
【物理化学学报】doi: 10.1016/j.actphy.2025.100158
S型异质结因其优异的电荷分离能力和最大化的氧化还原电位,在高效光催化产氢领域受到广泛关注。本研究通过Yamamoto偶联反应合成新型芘-苯并噻二唑共轭聚合物(YBTPy),并采用溶剂热法原位沉积CdS纳米颗粒,构建了CdS/YBTPy S型异质结光催化剂。优化后的CP5复合材料产氢速率达5.01 mmol h−1 g−1,较纯相CdS(1.20 mmol h−1 g−1)提升4.2倍。通过原位辐照X射线光电子能谱结合开尔文探针力显微镜,阐明了异质结界面的特征性S型电荷转移路径。此外,采用飞秒瞬态吸收光谱研究了光生载流子的动力学行为。该工作为有机-无机杂化S型光催化体系的设计提供了新的理论基础。
