用于丝网印刷光电化学生物传感器的功能纳米材料的最新进
杨美清, 王路, 卢浩滋, 杨耀成, 刘松
【物理化学学报】doi: 10.3866/PKU.WHXB202310046
光电化学(PEC)生物传感器因其低背景、高灵敏度、高特异性和快响应速度等优点而备受关注。近年来,一次性丝网印刷电极(SPE)的引入极大地推动了PEC生物传感器的发展,使丝网印刷PEC生物传感器成为一种应用前景广阔的分析工具。在丝网印刷PEC生物传感器的构建过程中,光活性纳米材料起着至关重要的作用,因为它们不仅可用作光电转换平台,还可用作生物识别元件的装载平台。然而,单纯的光活性材料通常存在一些缺点,比如固有的毒性、宽带隙、高的电子空穴对重组率等,因此,通过各种设计策略来改善光活性材料的光电特性是十分必要的。为了获得高灵敏度的丝网印刷PEC生物传感器,通常还需要将高性能光电极与各种信号放大策略相结合。鉴于此,我们在本文中首次对用于丝网印刷PEC生物传感器的光活性材料进行了系统总结,并将其归为四大类:金属氧化物、金属硫族化合物、碳纳米材料和铋基纳米材料。同时,我们重点关注了光活性材料的设计策略,例如形态调控、元素掺杂、异质结构建等。此外,我们还通过具有代表性的丝网印刷PEC免疫传感器和丝网印刷PEC适体传感器介绍了一些信号放大策略,如酶标记放大(ELA)策略、聚合酶链反应(PCR)策略、滚环扩增(RCA)策略和杂交链式反应(HCR)策略。最后,我们还讨论了丝网印刷PEC生物传感器目前面临的挑战和前景。我们希望通过本文让读者全面了解丝网印刷PEC生物传感器的最新进展,并为该领域的未来发展提供可行性指导。
关键词: 光电化学分析, 生物传感器, 丝网印刷电极, 光活性材料, 信号放大技术
微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用
王慧, LabidiAbdelkader, 任梦涵, ShaikFeroz, 王传义
【物理化学学报】doi: 10.1016/j.actphy.2024.100039
光催化一氧化氮(NO)转化技术具有高效、经济、环保的特点,可以使用g-C3N4去除NO。通过微观结构调控在g-C3N4表面引入新的吸附位点可以改变g-C3N4与气体分子之间的构效关系,从而提高光催化NO转化活性并抑制NO2的产生。然而,很少有综述文章关注g-C3N4基材料微观结构变化对NO和O2的吸附和活化的微观影响。这对NO转化领域的材料设计工作以及从根本上提高NO转化活性和选择性的策略具有重要指导意义。因此,我们的工作系统地总结了通过微观结构调控引入吸附和活化位点的策略,并强调了这些位点在光催化NO转化过程中的作用。目的是阐明吸附和活化位点对吸附行为的影响以及这些位点与反应路径之间的相关性。最后,介绍了提高g-C3N4在光催化NO转化领域的吸附和活化水平的发展趋势和未来前景,以期为g-C3N4基光催化材料的开发和实际应用提供重要参考。
关键词: 光催化, g-C3N4, NO转换, 微观结构控制, 吸附, 活化

出版年份

相关作者

相关热词