【物理化学学报】doi: 10.1016/j.actphy.2025.100096
石墨负极是目前锂离子电池中广泛使用的商品化负极材料,其在接触电解液发生储锂时会因有机电解液的还原分解而形成一层固体电解质界面膜(SEI)。该界面膜对锂离子电池的循环稳定性、快充性能、安全性能等诸多方面有着关键影响。通过在石墨表面构建一层包覆层,减少其与电解液之间的副反应并促进稳定电极界面的形成,可以提高储锂的电化学性能。表面包覆通常通过气相或液相法实现,包覆材料主要包括碳材料、锂离子导体、金属化合物和聚合物材料等体系。本文评述了不同包覆材料和方法对石墨负极性能的提升作用,分析了包覆改性策略影响电池快充性能和循环稳定性的机制,为锂离子电池负极材料的研究和开发提供了材料物理化学基础。
【物理化学学报】doi: 10.3866/PKU.WHXB202305040
全固态无负极锂金属电池(AFSSLB)是一种通过初次充电形成金属锂负极的新型锂电池,它的负极与正极容量比为1,能使任意锂化正极系统达到最大能量密度。无机固态电解质的引入使无负极锂金属体系兼具高安全性。然而,电池循环过程中的锂离子通量不均导致的界面接触损失和锂枝晶生长会不断加剧,从而造成电池循环容量迅速衰减。本文构筑了纳米化的银碳复合集流体,显著增强了全固态无负极锂金属电池中集流体-电解质界面的性能。使用该集流体的固态电池循环过程中接触良好,界面阻抗为~10 Ω∙cm−2。从而实现了超过7.0 mAh∙cm−2锂金属的均匀稳定沉积,并在0.25 mA∙cm−2的电流条件下实现循环200次以上。
【物理化学学报】doi: 10.3866/PKU.WHXB202306040
随着化石能源的使用日益增加,大气中CO2的浓度不断上升,给环境带来了挑战。通过催化将CO2转化为高附加值化学品为解决这些问题提供了一个机会,并为燃料合成开辟了一条新的途径,最终有助于减少CO2排放并实现碳中和。在众多的方法中,利用可再生清洁能源进行CO2电还原反应(CO2RR)以其反应条件温和、反应进度可控、环境友好以及可以产生大量的附加值产品而受到重视。在此背景下,咪唑鎓基材料及其衍生物已成为CO2RR的有潜力的候选材料。这些材料对CO2有很强的亲和力,并且在CO2RR系统中作为电解质和电催化剂都有应用。所以它们的主要优点之一是能够在催化体系中富集CO2,有效地抑制析氢副反应(HER),并提高CO2RR产物的选择性。了解电催化条件下咪唑鎓基离子液体(Im-ILs)与CO2分子之间的相互作用机制对于从分子角度深入了解为什么添加Im-ILs可以改善CO2RR性能至关重要。此外在非均相电催化剂中,Im-ILs作为表面修饰基团和捕集剂,可以显著改变催化剂的表面环境和疏水性,从而促进CO2RR。值得注意的是,Lehn型和金属卟啉分子催化剂中的咪唑鎓基团已被发现对这些催化剂在CO2RR中的性能有影响。N-杂环卡宾(NHC)基电催化剂作为咪唑鎓与CO2相互作用的活性形式之一,表现出优异的CO2RR性能。将NHC基电催化剂引入多孔多相催化剂和分子催化剂中,可以稳定金属纳米颗粒,提高捕获CO2的能力,从而提高CO2RR活性。总之,在CO2RR中使用咪唑鎓基材料对于推进CO2转化,实现可持续、有效合成高附加值化学品具有巨大的前景。