N-Iodo-succininide (NIS)/K2S2O8 Initiated Self-Coupling of Enamides to Nitrogen-Containing Quaternary Carbon Centers

Xiaoqiang Zhou Hao Yan Qiuya Wang

Citation:  Zhou Xiaoqiang, Yan Hao, Wang Qiuya. N-Iodo-succininide (NIS)/K2S2O8 Initiated Self-Coupling of Enamides to Nitrogen-Containing Quaternary Carbon Centers[J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 2142-2147. doi: 10.6023/cjoc202003032 shu

N-碘代丁二酰亚胺(NIS)/K2S2O8促进烯酰胺的自偶联反应构建含氮原子的季碳中心

    通讯作者: 周小强, zhouxq2017@163.com
  • 基金项目:

    陕西省教育厅自然科学专项研究基金 19JK0287

    陕西省科技厅自然科学基础研究基金(No.2019JQ-902)、陕西省教育厅自然科学专项研究基金(No.19JK0287)和渭南师范学院博士科研启动基金(Nos.18ZRRC05,17ZRRC04)资助项目

    陕西省科技厅自然科学基础研究基金 2019JQ-902

    渭南师范学院博士科研启动基金 17ZRRC04

    渭南师范学院博士科研启动基金 18ZRRC05

摘要: 报道了一种N-碘代丁二酰亚胺(NIS)/K2S2O8促进的烯酰胺自偶联反应构建C—C键的方法.这种无过渡金属催化的自由基反应具有环境友好和原子经济性高的显著优势,为合成含氮原子的季碳中心结构骨架提供了一种实用方法.

English

  • The construction of C—C bond is a key task for the synthesis of quaternary carbon centers, which are widespread structures in natural products and pharmaceutical drugs.[1] Although numerous methods have been developed for the formation of quaternary carbon centers, an efficient and environmental synthesis of quaternary carbon center containing a nitrogen or other heteroatom atom, a prevalent structure in natural alkaloids, [2] is still a challenging task.[3]

    As versatile and powerful starting materials, enamides have been widely used in constructing substantial bioactive N-heterocyclic motifs[4-7] including nitrogen-containing quaternary carbon centers. Kobayashi's group[8] firstly demonstrated a strong Brønsted or Lewis acid promoted self-coupling reaction of enecarbamates and enamides. Equilibrium between enamides and ketimines exists under acidic condition (Scheme 1a). Zhou's group[9] reported a chiral Brønsted acid catalyzed asymmetric Friedel-Crafts reaction. α-Aryl enamides and indoles were applied as substrates to generate chiral amines with a quaternary carbon stereogenic center (Scheme 1b). Chiral 1, 1'-bi-2- naphthol (BINOL)-phosphate catalyzed and FeCl3 catalyzed self-coupling of enamides were developed respectively by Tsogoeva's group[10] and Guan's group.[11] This self-coupling reaction featured high atom-economy (Schemes 1c, 1d). However, performing this self-coupling reaction efficiently and environmentally keeps a challenge. Iodide or hypervalent iodine-promoted C—C bond formation reactions have received considerable attention due to their environmental friendliness and high reactivity.[12-13] Herein, we wish to report an iodide initiated self-coupling of enamides towards nitrogen-containing quaternary carbon centers.

    Scheme 1

    Scheme 1.  Reactions for the synthesis of nitrogen-containing quarternary carbon centers

    Our initial studies were commenced with readily available enamide 1a as model substrate to optimize the reaction conditions. To our delight, The desired C—C bond could be formed successfully in the presence of KI (10 mol%) and K2S2O8 (20 mol%) in 1, 2-dichloroethane (DCE) at 70 ℃. (Z)-N, N'-(1, 3-Diphenylbut-1-ene-1, 3-diyl)diacetamide (2a) was isolated in 63% yield (Table 1, Entry 1), and the structure (Z configuration) of 2a was confirmed unambiguously by X-ray diffraction analysis (CCDC: 1439475, Figure 1). Then, various peroxides such as Na2S2O8, tert-butyl hydroperoxide (TBHP), di-tert-butyl peroxide (DTBP), benzoyl peroxide (BPO), and tert-Butyl peroxybenzoate (TBPB) were screened. The results indicated that K2S2O8 displayed the best ability for this transformation (Table 1, Entries 1~6). Subsequently, a range of iodides such as N-iodo-succininide (NIS), tetrabutylammonium iodide (TBAI), and I2 were evaluated. Among these iodides, NIS exhibited an excellent ability and the reaction time could be reduced to 2 h (Table 1, Entries 7~9). A survey of solvents indicated that PhCl was the better medium for this conversion, 2a was given with 84% yield (Table 1, Entries 10~13). It was worth mentioning that, when the dosages of iodide and oxidant were reduced to a quarter, the yields could remained relatively stable (Table 1, Entries 14, 15). Finally, the optimized reaction conditions were obtained as follows: the self-coupling of enamides could be initiated by 2.5 mol% of NIS and 5 mol% of K2S2O8 in PhCl at 70 ℃ (Table 1, Entry15).

    Figure 1

    Figure 1.  X-ray crystal structure of 2a (CCDC: 1439475)

    Table 1

    Table 1.  Optimization of the reaction conditionsa
    下载: 导出CSV
    Entry Iodide (mol%) Oxidant (mol%) Solvent Time/h Yieldb/%
    1 KI (10) K2S2O8 (20) DCE 10 63
    2 KI (10) Na2S2O8 (20) DCE 10 60
    3 KI (10) TBHP (20) DCE 10 0
    4 KI (10) DTBP (20) DCE 10 0
    5 KI (10) BPO (20) DCE 10 0
    6 KI (10) TBPB (20) DCE 10 0
    7 NIS (10) K2S2O8 (20) DCE 2 73
    8 TBAI (10) K2S2O8 (20) DCE 10 14
    9 I2 (10) K2S2O8 (20) DCE 10 20
    10 NIS (10) K2S2O8 (20) CH3CN 2 0
    11 NIS (10) K2S2O8 (20) Dioxane 2 0
    12 NIS (10) K2S2O8 (20) Toluene 2 76
    13 NIS (10) K2S2O8 (20) PhCl 2 84
    14 NIS (5) K2S2O8 (10) PhCl 2 80
    15c NIS (2.5) K2S2O8 (5) PhCl 2 81
    a Conditions: 1a (0.2 mmol), solvent (1 mL), under 70 ℃ and monitored by TLC. b Isolated yields. c For convenient operation, 0.4 mmol of 1a was used in Entry 15.

    With the optimized reaction conditions in hands (Table 1, Entry 15), the substrate scope of this self-coupling was investigated and the results were summarized in Table 2. Generally, the position of the substituents significantly influenced this transformation. Enamides with electron-donating or electron-withdrawing substrates such as methyl, methoxy, phenyl, fluoro, chloro, bromo, and trifluoromethyl at the para- or meta-position of the aromatic ring were transformed efficiently and the corresponding products were generated in good to high yields (2b, 2c, 2e, 2f, 2h~2j, 2l~2o). Whereas o-methyl-substituted enamide 1d, α-naphthyl-substituted enamide 1g and o-chlorosubsti- tuted enamide 1k couldn't work under standard conditions. And enamide with a nitro group at the para-position of the aromatic ring 1p also couldn't transform smoothly to the corresponding product 2p under standard conditions. Additionally, N-propionyl and N-isobutyryl enamides were also examined, and the reaction proceeded well to obtain the corresponding products with moderate yields (2q, 2r).

    Table 2

    Table 2.  Substrate scope of enamides
    下载: 导出CSV

    To gain mechanistic insight into this transformation, a radical-trapping experiment was carried out (Scheme 2). By the addition of a free radical scavenger 2, 2, 6, 6-tetra- methylpiperidin-1-oxyl (TEMPO), this self-coupling can be inhibited absolutely, and a little amount of TEMPO-trapped N-(1-phenylethylidene)acetamide 3a was obtained. This result suggested that the reaction might be involved a radical process.

    Scheme 2

    Scheme 2.  Controlled experiment

    Based on the previous literature reports[7-8, 10-11, 13] and the above results, the possible mechanism for this transformation is proposed, as illustrated in Scheme 3. First, the isomerization of enamide 1a afforded ketimine 1b. Then the primary radical genetated from NIS and K2S2O8 activated 1a to obtain radical A and tautomeric radical B. And radical B could be inhibited by TEMPO to afford amide 3a. Subsequently, the radical addition of B with 1b led to radical C. Finally, hydrogen atom abstraction of enamide 1a by intermediate C produced intermediate D. The isomerization of D could afford the desired product 2a.

    Scheme 3

    Scheme 3.  Proposed mechanism

    In summary, we have demonstrated a novel transition metal free self-coupling reaction of enamides. This NIS/ K2S2O8 initiated C—C bond formation reaction is a convenient access to enamido-substituted nitrogen-contai- ning quaternary carbon centers. Additionally, the protocol not only offers several notable advantages including the environmental friendliness and atom-economy feature of this transformation, but also provides a useful and attractive strategy to form this kind of quaternary carbon centers.

    1H NMR spectra were recorded at 400 MHz. Chemical shifts were referenced to tetramethylsilane (δ 0) in CDCl3 or DMSO (δ 2.50) in DMSO-d6 as an internal standard. 13C NMR spectra were obtained at 100 MHz and were calibrated with CDCl3 (δ 77.00) or DMSO-d6 (δ 39.50). The high-resolution mass spectra (HRMS) were recorded on an FT-ICR mass spectrometer using electrospray ionization (ESI). Products were purified by flash chromatography on 200~300 mesh silica gels. Unless otherwise noted, commercially available reagents and solvents were used without further purification. The enamides 1a~1r were prepared from the corresponding ketoximes according to the reported literature.[4]

    A test tube equipped with a magnetic stir bar was charged with enamides 1 (0.4 mmol), NIS (0.01 mmol, 2.2 mg), K2S2O8 (0.02 mmol, 5.4 mg) in 1 mL of PhCl. Then the reaction mixture was stirred at 70 ℃ (oil bath temperature). After completion of the reaction (monitored by TLC, about 2~4 h), the reaction mixture was concentrated in vacuo. The residues were purified by column chromatography, eluting with petroleum ether/EtOAc to afford the desired products.

    (Z)-N, N'-(1, 3-Diphenylbut-1-ene-1, 3-diyl)diacetamide (2a):[11] 1H NMR (400 MHz, DMSO-d6) δ: 9.28 (s, 1H), 8.49 (s, 1H), 7.36~7.34 (m, 2H), 7.31~7.25 (m, 5H), 7.23~7.17 (m, 3H), 5.59 (s, 1H), 1.99 (s, 3H), 1.59 (s, 3H), 1.23 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 170.21, 167.26, 143.54, 138.35, 136.74, 127.89, 127.82, 127.60, 125.96, 125.34, 123.84, 57.80, 33.96, 22.93, 22.23; EI-MS m/z: 322.

    (Z)-N, N'-(1, 3-Di-p-tolylbut-1-ene-1, 3-diyl)diacetamide (2b):[11] 1H NMR (400 MHz, DMSO-d6) δ: 9.25 (s, 1H), 8.46 (s, 1H), 7.24~7.2 (m, 2H), 7.10~7.04 (m, 6H), 5.53 (s, 1H), 2.28 (s, 3H), 2.26 (s, 3H), 1.98 (s, 3H), 1.56 (s, 3H), 1.23 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 170.15, 167.31, 140.65, 136.85, 136.62, 135.55, 134.88, 128.51, 128.36, 125.91, 125.33, 123.08, 57.65, 34.02, 22.99, 22.26, 20.76, 20.51; EI-MS m/z: 350.

    (Z)-N, N'-(1, 3-Di-m-tolylbut-1-ene-1, 3-diyl)diacetamide (2c): 1H NMR (400 MHz, DMSO-d6) δ: 9.24 (s, 1H), 8.48 (s, 1H), 7.19~7.12 (m, 4H), 7.07~7.05 (m, 1H), 7.01~6.98 (m, 3H), 5.55 (s, 1H), 2.30 (s, 3H), 2.23 (s, 3H), 1.99 (s, 3H), 1.57 (s, 3H), 1.23 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 170.17, 167.37, 143.36, 138.45, 136.91, 136.88, 128.30, 127.83, 127.77, 126.63, 126.46, 126.37, 123.51, 123.23, 122.14, 57.72, 34.20, 22.94, 22.28, 21.10, 21.09. ESI-HRMS calcd for C22H26N2O2Na [M+Na+] 373.1892, found 373.1895.

    (Z)-N, N'-(1, 3-Bis(3-methoxyphenyl)but-1-ene-1, 3-diyl)-diacetamide (2e):[11] 1H NMR (400 MHz, DMSO-d6) δ: 9.28 (s, 1H), 8.48 (s, 1H), 7.23~7.17 (m, 2H), 6.96~6.94 (m, 1H), 6.88~6.83 (m, 2H), 6.80~6.73 (m, 3H), 5.63 (s, 1H), 3.74 (s, 3H), 3.68 (s, 3H), 1.99 (s, 3H), 1.60 (s, 3H), 1.29 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 170.18, 167.49, 145.31, 140.03, 136.61, 128.98, 128.85, 123.96, 118.49, 117.49, 112.89, 111.74, 111.64, 111.10, 57.72, 55.05, 54.76, 33.78, 22.97, 22.31; EI-MS m/z: 382.

    (Z)-N, N'-(1, 3-Di([1, 1'-biphenyl]-4-yl)but-1-ene-1, 3-diyl)-diacetamide (2f):[11] 1H NMR (400 MHz, DMSO-d6) δ: 9.38 (s, 1H), 8.60 (s, 1H), 7.68~7.57 (m, 8H), 7.49~7.44 (m, 6H), 7.38~7.33 (m, 4H), 5.74 (s, 1H), 2.05 (s, 3H), 1.69 (s, 3H), 1.29 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 170.34, 167.42, 142.91, 140.05, 139.79, 139.40, 138.02, 137.51, 136.44, 128.99, 127.46, 127.28, 126.61, 126.54, 126.26, 126.19, 126.12, 124.09, 57.74, 33.66, 23.01, 22.25; EI-MS m/z: 474.

    (Z)-N, N'-(1, 3-Di(naphthalen-2-yl)but-1-ene-1, 3-diyl)dia-cetamide (2h):[11] 1H NMR (400 MHz, DMSO-d6) δ: 9.39 (s, 1H), 8.71 (s, 1H), 7.93~7.75 (m, 8H), 7.57~7.42 (m, 6H), 5.85 (s, 1H), 2.09 (s, 3H), 1.75 (s, 3H), 0.97 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 170.46, 167.39, 141.22, 136.93, 135.98, 132.86, 132.76, 132.69, 131.73, 128.09, 127.94, 127.41, 127.32, 127.17, 126.20, 125.94, 125.63, 124.89, 124.69, 124.64, 124.40, 123.14, 58.11, 33.59, 23.12, 22.14; EI-MS m/z: 422.

    (Z)-N, N'-(1, 3-Bis(4-chlorophenyl)but-1-ene-1, 3-diyl)dia-cetamide (2i):[11] 1H NMR (400 MHz, DMSO-d6) δ: 9.32 (s, 1H), 8.57 (s, 1H), 7.35~7.31 (m, 6H), 7.22~7.19 (m, 2H), 5.64 (s, 1H), 1.98 (s, 3H), 1.59 (s, 3H), 1.30 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 170.41, 167.32, 142.63, 137.15, 135.73, 132.20, 130.63, 127.95, 127.80, 127.72, 127.48, 124.52, 57.49, 33.28, 22.94, 22.15; EI-MS m/z: 390.

    (Z)-N, N'-(1, 3-Bis(3-chlorophenyl)but-1-ene-1, 3-diyl)dia-cetamide (2j):[10] 1H NMR (400 MHz, DMSO-d6) δ: 9.30 (s, 1H), 8.59 (s, 1H), 7.41 (m, 1H), 7.32~7.25 (m, 5H), 7.21~7.17 (m, 2H), 5.69 (s, 1H), 2.00 (s, 3H), 1.62 (s, 3H), 1.33 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 170.41, 167.40, 146.10, 140.67, 135.53, 132.89, 132.78, 129.81, 129.74, 127.52, 126.15, 125.74, 125.46, 125.08, 124.73, 124.20, 57.59, 33.06, 22.93, 22.17; EI-MS m/z: 390.

    (Z)-N, N'-(1, 3-Bis(4-bromophenyl)but-1-ene-1, 3-diyl)dia-cetamide (2l):[11] 1H NMR (400 MHz, DMSO-d6) δ: 9.33 (s, 1H), 8.58 (s, 1H), 7.49~7.44 (m, 4H), 7.31~7.29 (m, 2H), 7.16~7.14 (m, 2H), 5.65 (s, 1H), 1.99 (s, 3H), 1.59 (s, 3H), 1.31 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 170.42, 167.33, 143.02, 137.51, 135.87, 130.86, 130.64, 128.13, 127.86, 124.42, 120.81, 119.09, 57.53, 33.26, 22.94, 22.13; EI-MS m/z: 478.

    (Z)-N, N'-(1, 3-Bis(3-bromophenyl)but-1-ene-1, 3-diyl)dia-cetamide (2m): 1H NMR (400 MHz, DMSO-d6) δ: 9.27 (s, 1H), 8.59 (s, 1H), 7.55~7.54 (m, 1H), 7.47~7.33 (m, 4H), 7.27~7.21 (m, 3H), 5.67 (s, 1H), 1.99 (s, 3H), 1.62 (s, 3H), 1.33 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 170.38, 167.35, 146.28, 140.91, 135.42, 130.41, 130.09, 130.05, 129.07, 128.54, 128.28 125.11, 124.57, 121.50, 121.39, 57.53, 33.05, 22.92, 22.19. ESI-HRMS calcd for C20H20Br2N2O2Na [M+Na+] 500.9789, found 500.9791.

    (Z)-N, N'-(1, 3-Bis(4-fluorophenyl)but-1-ene-1, 3-diyl)dia-cetamide (2n):[11] 1H NMR (400 MHz, DMSO-d6) δ: 9.36 (s, 1H), 8.55 (s, 1H), 7.40~7.36 (m, 2H), 7.24~7.21 (m, 2H), 7.14~7.06 (m, 4H), 5.58 (s, 1H), 1.99 (s, 3H), 1.59 (s, 3H), 1.32 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 170.39, 167.31, 161.89 (d, JC-F=243 Hz), 160.64 (d, JC-F=240 Hz), 139.66 (d, JC-F=3 Hz), 135.80, 134.73 (d, JC-F=3 Hz), 127.98 (d, JC-F=8 Hz), 127.45 (d, JC-F=8 Hz), 123.94, 114.75 (d, JC-F=20 Hz), 114.44 (d, JC-F=21 Hz), 57.47, 33.74, 22.96, 22.28; EI-MS m/z: 358.

    (Z)-N, N'-(1, 3-Bis(4-(trifluoromethyl)phenyl)but-1-ene- 1, 3-diyl)diacetamide (2o): 1H NMR (400 MHz, DMSO-d6) δ: 9.34 (s, 1H), 8.71 (s, 1H), 7.66~7.63 (m, 4H), 7.59~7.57 (m, 2H), 7.45~7.43 (m, 2H), 5.79 (s, 1H), 2.01 (s, 3H), 1.66 (s, 3H), 1.24 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ: 170.61, 167.31, 148.22, 142.36, 135.83, 124.39 (q, JC-F=270 Hz), 124.36 (q, JC-F=270 Hz), 128.03 (d, JC-F=31 Hz), 127.49 (d, JC-F=12 Hz), 127.11, 126.61 (d, JC-F=34 Hz), 125.89, 124.90 (d, JC-F=3 Hz), 124.75 (d, JC-F=3 Hz), 57.76, 33.03, 22.88, 21.90. ESI- HRMS calcd for C22H20F6N2O2Na [M+Na+] 481.1327, found 481.1329.

    (Z)-N, N'-(1, 3-Diphenylbut-1-ene-1, 3-diyl)dipropionami-de (2q):[11] 1H NMR (400 MHz, CDCl3) δ: 9.16 (s, 1H), 7.43~7.41 (m, 2H), 7.31~7.18 (m, 8H), 6.28 (s, 1H), 5.35 (s, 1H), 2.34~2.22 (m, 2H), 1.82~1.72 (m, 1H), 1.58 (s, 3H), 1.46~1.37 (m, 1H), 1.20 (t, J=7.6 Hz, 3H), 0.73 (t, J=7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 174.00, 172.07, 142.10, 138.87, 138.40, 128.26, 128.07, 127.92, 126.41, 126.24, 125.32, 121.89, 57.17, 35.79, 29.93, 28.96, 9.98, 8.71; EI-MS m/z: 350.

    (Z)-N, N'-(1, 3-Diphenylbut-1-ene-1, 3-diyl)bis(2-methyl-propanamide) (2r): 1H NMR (400 MHz, CDCl3) δ: 9.30 (s, 1H), 7.40~7.39 (m, 2H), 7.30~7.17 (m, 8H), 6.20 (s, 1H), 5.31 (s, 1H), 2.50~2.40 (m, 1H), 1.82~1.72 (m, 1H), 1.57 (s, 3H), 1.25 (t, J=6.8 Hz, 3H), 1.16 (t, J=6.8 Hz, 3H), 0.86 (t, J=6.8 Hz, 3H), 0.68 (t, J=6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 176.84, 174.89, 142.35, 138.85, 138.74, 128.29, 128.01, 127.80, 126.39, 126.17, 125.24, 122.09, 57.82, 36.04, 35.83, 35.00, 19.88, 19.59, 19.26, 18.24; ESI-HRMS calcd for C24H30N2O2Na [M+ Na+] 401.2205, found 401.2208.

    N-(1-Phenyl-2-((2, 2, 6, 6-tetramethylpiperidin-1-yl)oxy)-ethylidene)acetamide (3a):[6] 1H NMR (400 MHz, CDCl3) δ: 7.77~7.74 (m, 2H), 7.50~7.39 (m, 3H), 5.05 (s, 2H), 2.35 (s, 3H), 1.60~1.32 (m, 6H), 1.20 (s, 6H), 1.14 (s, 6H); 13C NMR (100 MHz, CDCl3) δ: 183.46, 158.86, 135.08, 131.49, 128.54, 127.33, 75.97, 60.33, 39.85, 32.63, 25.84, 20.56, 16.93; EI-MS m/z (M+H+) 317.

    Supporting Information 1H NMR and 13C NMR spectra of 2a~2r, and 3a. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.


    1. [1]

      For reviews, see (a) Fuji, K. Chem. Rev. 1993, 93, 2037.
      (b) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388.
      (c) Christoffers, J.; Mann, A. Angew. Chem., Int. Ed. 2001, 40, 4591.
      (d) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.

    2. [2]

      (a) Ohfune, Y.; Shinada, T., Eur. J. Org. Chem. 2005, 5127.
      (b) Cordell, G. A. The Alkaloids: Chemistry and Biology, Vol. 60, Elsevier, San Diego, 2003.
      (c) Ramon, D. J.; Yus, M. Curr. Org. Chem. 2004, 8, 149.
      (d) Kobayashi, J.; Morita, H. Alkaloids 2003, 60, 165.

    3. [3]

      (a) Wang, Q.-S.; Xie, J.-H.; Li, W.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2011, 13, 3388.
      (b) Zhang, Q.; Zhu, S.-F.; Qiao, X.-C.; Wang, L.-X.; Zhou, Q.-L. Adv. Synth. Catal. 2008, 350, 1507.

    4. [4]

      Guan, Z.-H.; Zhang, Z.; Ren, Z.; Wang, Y.; Zhang, X.-M. J. Org. Chem. 2011, 76, 339.

    5. [5]

      (a) Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9585.
      (b) Stuart, D.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 18326.
      (c) Zhao, M.; Ren, Z.; Wang, Y.; Guan, Z.-H. Chem. Commun. 2012, 48, 8105.
      (d) Chen, M.; Ren, Z.; Wang, Y.; Guan, Z.-H. Angew. Chem., Int. Ed. 2013, 52, 14196.
      (e) Zhao, M.; Ren, Z.; Wang, Y.; Guan, Z.-H. Chem.-Eur. J. 2014, 20, 1839.
      (f) Zhao, M.; Ren, Z.; Wang, Y.; Guan, Z.-H. Org. Lett. 2014, 16, 608.
      (g) Li, B.; Wang, N.; Liang, Y.; Xu, S.; Wang, B. Org. Lett. 2013, 15, 136.
      (h) Li, Y.; Zhou, X.; Wu, Z.; Cao, J.; Ma, C.; He, Y.; Huang, G. RSC Adv. 2015, 5, 88214.
      (i) Cao, J.; Zhou, X.; Ma, H.; Shi, C.; Huang, G. RSC Adv. 2016, 6, 57232.
      (j) Zhao, M.-N.; Ren, Z.-H.; Yang, D.-S.; Guan, Z.-H. Org. Lett. 2018, 20, 1287.
      (k) Chang, X.-H.; Wang, Z.-L.; Zhao, M.; Yang. C.; Li, J.-J.; Ma, W.-W.; Xu, Y.-H. Org. Lett. 2020, 22, 944.

    6. [6]

      Zhou, X.; Yan, H.; Ma, C.; He, Y.; Li, Y.; Cao, J.; Yan R.; Huang, G. J. Org. Chem. 2016, 81, 25. doi: 10.1021/acs.joc.5b02384

    7. [7]

      Liu, R.-H.; Shen, Z.-Y.; Wang, C.; Loh, T.-P.; Hu, X.-H. Org. Lett. 2020, 22, 944. doi: 10.1021/acs.orglett.9b04495

    8. [8]

      (a) Kobayashi, S.; Gustafsson, T.; Shimizu, Y.; Kiyohara, H.; Matsubara, R. Org. Lett. 2006, 8, 4923.
      (b) Matsubara, R.; Vital, P.; Nakamura, Y.; Kiyohara, H.; Kobayashi, S. Tetrahedron 2004, 60, 9769.

    9. [9]

      Jia, Y.; Zhong, J.; Zhu, S.; Zhang, C.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2007, 46, 5565. doi: 10.1002/anie.200701067

    10. [10]

      Baudequin, C.; Zamfir, A.; Tsogoeva, S. B. Chem. Commun. 2008, 4637.

    11. [11]

      Zhao, M.; Du, W.; Ren, Z.; Wang, Y.; Guan, Z.-H. Eur. J. Org. Chem. 2013, 7989.

    12. [12]

      (a) Wu, X.; Gong, J.; Qi, X. Org. Biomol. Chem. 2014, 12, 5807.
      (b) Shi, Z.; Wang, L.; Cui, X. Chin. J. Org. Chem. 2019, 39, 1596 (in Chinese).
      (施兆江, 王连会, 崔秀灵, 有机化学, 2019, 39, 1596.)

    13. [13]

      Tian, Y.; Sun, C.; Tan, R.-X.; Liu, Z.-Q. Green Chem. 2018, 20, 588. doi: 10.1039/C7GC03745G

  • Scheme 1  Reactions for the synthesis of nitrogen-containing quarternary carbon centers

    Figure 1  X-ray crystal structure of 2a (CCDC: 1439475)

    Scheme 2  Controlled experiment

    Scheme 3  Proposed mechanism

    Table 1.  Optimization of the reaction conditionsa

    Entry Iodide (mol%) Oxidant (mol%) Solvent Time/h Yieldb/%
    1 KI (10) K2S2O8 (20) DCE 10 63
    2 KI (10) Na2S2O8 (20) DCE 10 60
    3 KI (10) TBHP (20) DCE 10 0
    4 KI (10) DTBP (20) DCE 10 0
    5 KI (10) BPO (20) DCE 10 0
    6 KI (10) TBPB (20) DCE 10 0
    7 NIS (10) K2S2O8 (20) DCE 2 73
    8 TBAI (10) K2S2O8 (20) DCE 10 14
    9 I2 (10) K2S2O8 (20) DCE 10 20
    10 NIS (10) K2S2O8 (20) CH3CN 2 0
    11 NIS (10) K2S2O8 (20) Dioxane 2 0
    12 NIS (10) K2S2O8 (20) Toluene 2 76
    13 NIS (10) K2S2O8 (20) PhCl 2 84
    14 NIS (5) K2S2O8 (10) PhCl 2 80
    15c NIS (2.5) K2S2O8 (5) PhCl 2 81
    a Conditions: 1a (0.2 mmol), solvent (1 mL), under 70 ℃ and monitored by TLC. b Isolated yields. c For convenient operation, 0.4 mmol of 1a was used in Entry 15.
    下载: 导出CSV

    Table 2.  Substrate scope of enamides

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  1206
  • HTML全文浏览量:  250
文章相关
  • 发布日期:  2020-07-25
  • 收稿日期:  2020-03-12
  • 修回日期:  2020-03-29
  • 网络出版日期:  2020-04-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章