连续小波变换结合无参数模型增强框架对时序漂移的近红外光谱建模

张进 叶世著 吴艾璟 李博岩 李杰 詹莜国 彭海根 徐兴阳

引用本文: 张进, 叶世著, 吴艾璟, 李博岩, 李杰, 詹莜国, 彭海根, 徐兴阳. 连续小波变换结合无参数模型增强框架对时序漂移的近红外光谱建模[J]. 分析化学, 2022, 50(9): 1391-1398. doi: 10.19756/j.issn.0253-3820.211236 shu
Citation:  ZHANG Jin,  YE Shi-Zhu,  WU Ai-Jing,  LI Bo-Yan,  LI Jie,  ZHAN You-Guo,  PENG Hai-Gen,  XU Xing-Yang. Continuous Wavelet Transform Combined with Parametric-Free Calibration Enhancement Framework for Calibration of Time-shift Near-infrared Spectra[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1391-1398. doi: 10.19756/j.issn.0253-3820.211236 shu

连续小波变换结合无参数模型增强框架对时序漂移的近红外光谱建模

    通讯作者: 徐兴阳,E-mail:yy_xxy@sina.com
  • 基金项目:

    国家自然科学基金项目(No.22004022)、贵州省科技厅科技计划项目(No.黔科合基础-ZK[2021]一般045)和贵州省教育厅普通高等学校青年科技人才成长项目(No.黔教合KY字[2021]163)资助。

摘要: 近红外(Near-infrared,NIR)光谱法具有高效、无损的特点,然而其采集的光谱容易受多种外界因素的影响而发生漂移,导致分析结果出现偏差。时序漂移是一种NIR光谱随检测时间发生持续且有规律漂移的普遍现象。本研究提出了一种时序漂移NIR光谱的建模新方法,将漂移信号分解为背景漂移和样本依赖的时序漂移。分别利用连续小波变换(Continuous wavelet transform,CWT)和半监督-无参数模型增强(Semi-supervised parameter-free calibration enhancement,SS-PFCE)消除NIR光谱中时序背景漂移和样本依赖的时序信号漂移部分,进而实现准确建模。通过对2019年和2020年在云南省境内分别采集的928个和962个土壤样品的时序漂移NIR光谱进行建模,以土壤有机质(Soil organic matter,SOM)含量的预测准确性验证本方法的建模效果。对2019年采集的光谱建模(预测均方根误差(Root mean squared error of prediction,RMSEP)=6.7 g/kg,R2=0.76),预测2020年采集的漂移光谱时出现了较大的偏差(RMSEP=31.3 g/kg,R2=0.50)。通过CWT处理后的光谱建模预测,2020年光谱的预测结果明显变好(RMSEP=11.6 g/kg,R2=0.66);通过SS-PFCE进行模型增强后有了进一步的提升(RMSEP=8.3 g/kg,R2=0.67)。结果表明,CWT结合SS-PFCE能够最大程度消除NIR光谱中的时序漂移,获得较好的建模结果。

English


    1. [1]

      ZIEGLER U J, LEITENBERGER M, LONGIN C, FRIEDRICH H, WURSCHUM T, CARLE R, SCHWEIGGERT R M. J. Food Compos. Anal., 2016, 51:30-36.ZIEGLER U J, LEITENBERGER M, LONGIN C, FRIEDRICH H, WURSCHUM T, CARLE R, SCHWEIGGERT R M. J. Food Compos. Anal., 2016, 51:30-36.

    2. [2]

      DU Xia-Yu, XIONG Yan-Mei, XIA Jing-Jing, MIN Shun-Geng. Chin. J. Anal. Chem., 2020, 48(4):543-550. 杜夏瑜, 熊艳梅, 夏静静, 闵顺耕. 分析化学, 2020, 48(4):543-550.

    3. [3]

      CHU Gang-Hui, WANG Kun, YIN Xue-Bo. Chin. J. Anal. Chem., 2020, 48(4):536-542. 楚刚辉, 王坤, 尹学博. 分析化学, 2020, 48(4):536-542.

    4. [4]

      SCHOOT M, KAPPER C, VAN KOLLENBURG G H, POSTMA G J, VAN KESSEL G, BUYDENS L M C, JANSEN J J. Chemom. Intell. Lab. Syst., 2020, 204:104105.SCHOOT M, KAPPER C, VAN KOLLENBURG G H, POSTMA G J, VAN KESSEL G, BUYDENS L M C, JANSEN J J. Chemom. Intell. Lab. Syst., 2020, 204:104105.

    5. [5]

      ZHANG J, CUI X Y, CAI W S, SHAO X G. Sci. China:Chem., 2019, 62(2):271-279.ZHANG J, CUI X Y, CAI W S, SHAO X G. Sci. China:Chem., 2019, 62(2):271-279.

    6. [6]

      ZHANG J, CUI X Y, CAI W S, SHAO X G. J. Chemometr., 2018, 32(11):e2971.ZHANG J, CUI X Y, CAI W S, SHAO X G. J. Chemometr., 2018, 32(11):e2971.

    7. [7]

      ZHANG J, GUO C, CAI W S, SHAO X G. Chemom. Intell. Lab. Syst., 2021, 210:104244.ZHANG J, GUO C, CAI W S, SHAO X G. Chemom. Intell. Lab. Syst., 2021, 210:104244.

    8. [8]

      ZHANG Jin, HU Yun, ZHOU Luo-Xiong, LI Bo-Yan. J. Instrum. Anal., 2020, 39(10):1196-1203. 张进, 胡芸, 周罗雄, 李博岩. 分析测试学报, 2020, 39(10):1196-1203.

    9. [9]

      ZHANG Jin, CAI Wen-Sheng, SHAO Xue-Guang. Prog. Chem., 2017, 29(8):902-910. 张进, 蔡文生, 邵学广. 化学进展, 2017, 29(8):902-910.

    10. [10]

      WANG Y D, VELTKAMP D J, KOWALSKI B R. Anal. Chem., 2002, 63(23):2750-2756.WANG Y D, VELTKAMP D J, KOWALSKI B R. Anal. Chem., 2002, 63(23):2750-2756.

    11. [11]

      DU W, CHEN Z P, ZHONG L J, WANG S X, YU R Q, NORDON A, LITTLEJOHN D, HOLDEN M. Anal. Chim. Acta, 2011, 690(1):64-70.DU W, CHEN Z P, ZHONG L J, WANG S X, YU R Q, NORDON A, LITTLEJOHN D, HOLDEN M. Anal. Chim. Acta, 2011, 690(1):64-70.

    12. [12]

      LIU Y, CAI W S, SHAO X G. Anal. Chim. Acta, 2014, 836:18-23.LIU Y, CAI W S, SHAO X G. Anal. Chim. Acta, 2014, 836:18-23.

    13. [13]

      ZHANG J, GUO C, CUI X Y, CAI W S, SHAO X G. Anal. Chim. Acta, 2019, 1050:25-31.ZHANG J, GUO C, CUI X Y, CAI W S, SHAO X G. Anal. Chim. Acta, 2019, 1050:25-31.

    14. [14]

      ZHANG J, LI B Y, HU Y, ZHOU L X, WANG G Z, GUO G, ZHANG Q H, LEI S C, ZHANG A H. Anal. Chim. Acta, 2021, 1142:169-178.ZHANG J, LI B Y, HU Y, ZHOU L X, WANG G Z, GUO G, ZHANG Q H, LEI S C, ZHANG A H. Anal. Chim. Acta, 2021, 1142:169-178.

    15. [15]

      MISHRA P. Anal. Chim. Acta, 2021, 1187:339154.MISHRA P. Anal. Chim. Acta, 2021, 1187:339154.

    16. [16]

      MISHRA P, WOLTERING E. Anal. Chim. Acta, 2021, 1177:338771.MISHRA P, WOLTERING E. Anal. Chim. Acta, 2021, 1177:338771.

    17. [17]

      MISHRA P. Chemom. Intell. Lab. Syst., 2021, 214:104338.MISHRA P. Chemom. Intell. Lab. Syst., 2021, 214:104338.

    18. [18]

      NY/T 1121.6-2016. Soli Testing. Part 6:Method for Determination of Soil Organic Matter. Agricultural Standard of the People's Republic of China. 中华人民共和国农业行业标准.土壤检测第6部分:土壤有机质的测定. NY/T 1121.6-2016.

    19. [19]

      LI X Y, CAI W S, SHAO X G. J. Near Infrared Spectrosc., 2015, 23(5):285-291.LI X Y, CAI W S, SHAO X G. J. Near Infrared Spectrosc., 2015, 23(5):285-291.

    20. [20]

      ZOU X B, ZHAO J W, MALCOLM P, MEL H, MAO H P. Anal. Chim. Acta, 2010, 667(1-2):14-32.ZOU X B, ZHAO J W, MALCOLM P, MEL H, MAO H P. Anal. Chim. Acta, 2010, 667(1-2):14-32.

  • 加载中
计量
  • PDF下载量:  13
  • 文章访问数:  580
  • HTML全文浏览量:  46
文章相关
  • 收稿日期:  2021-03-20
  • 修回日期:  2022-04-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章