Pentafluoroethyl-Substituted Sulfonium Ylides: New Electrophilic Pentafluoroethylating Reagents

Yafei Liu Hangming Ge Long Lu Qilong Shen

Citation:  Liu Yafei, Ge Hangming, Lu Long, Shen Qilong. Pentafluoroethyl-Substituted Sulfonium Ylides: New Electrophilic Pentafluoroethylating Reagents[J]. Chinese Journal of Organic Chemistry, 2019, 39(1): 257-264. doi: 10.6023/cjoc201807018 shu

五氟乙基硫叶立德:一类新的亲电五氟乙基化试剂

    通讯作者: 吕龙, lulong@mail.sioc.ac.cn
    沈其龙, shenql@mail.sioc.ac.cn
  • 基金项目:

    国家自然科学基金 21421002

    国家自然科学基金 21632009

    国家自然科学基金(Nos.21625206,21632009,21572258,21572259,21421002)、中国科学院战略性先导科技专项B类(No.XDB20000000)资助项目

    国家自然科学基金 21625206

    国家自然科学基金 21572258

    中国科学院战略性先导科技专项B类 XDB20000000

    国家自然科学基金 21572259

摘要: 发展了两个基于硫叶立德骨架的亲电五氟乙基化试剂,其合成高效简洁、固体状态下稳定而溶液中反应活性高.在温和条件下,该试剂可以与β-酮酸酯、芳基/杂芳基碘化物以及富电子芳烃反应高产率地得到相应的五氟乙基化产物.

English

  • In 2015, we discovered that trifluoromethyl-substituted sulfonium ylide, a shelf-stable crystalline solid, was an electrophilic trifluoromethylating reagent that was able to trifluoromethylate β-ketoesters in N, N-dimethylformamide (DMF) using K2CO3 as the base or aryl iodides in the presence of copper power (Figure 1).[1] Classically, alkyl-substituted sulfonium ylides are generally acting as nucleophilic reagents for the preparation of epoxides, aziridine or cyclopropane derivatives, [2] the unusual umpolung reactivity of the trifluoromethyl-substituted sulfonium ylide promoted to study difluoromethyl- or monofluoromethyl-substituted sulfonium ylide and found that both of them were highly electrophilic difluoromethylating/monofluoromethylating reagents.[3, 4] More specifically, in the presence of Lewis acid of LiBF4, primary and sec- ondary alkanols reacted efficiently with reagent 2 to give difluoromethyl ethers in high yields, while reagent 3 reacted with a variety of nucleophiles such as alkoxides, aryl thiolates, amides and malonates to afford monofluoromethylated compounds in high yields.

    Figure 1

    Figure 1.  Electrophilic fluoroalkylating reagents based on sulfonium ylide skeleton

    In light of the high electrophilicity of the fluoromethylated sulfonium ylides, we wondered whether the sulfonium ylide skeleton is capable of acting as a general platform for the development of electrophilic reagents of other fluoroalkyl groups. We now disclose herein that two pentafluoroethyl-substituted sulfonium ylides 4a and 4b are highly electrophilic pentafluoroethylating reagents, which can pentafluoroethylate β-ketoesters, aryl iodides and heteroaromatics in high yields. Previously reported electrophilic pentafluoroethylating reagents including Yagupo- lskii and Umemoto's pentafluoroethyliodonium salts, [5] Togni-type pentafluoroethylbenziodoxole (BIXC2F5) developed by Qing, Shen and their coworkers, [6] and Yagupolskii-type pentafluoroethylated sulfonium salt developed by Xiao and co-workers.[7] Thus, the development of sulfonium ylide-based pentafluoroethylating reagents 4a and 4b represents a complement to the powerful arsenal of electrophilic reagents for pentafluoroethylation (Figure 2).

    Figure 2

    Figure 2.  Previously reported electrophilic pentafluoroethylating reagents

    Pentafluoroethylating reagent of pentafluoroethyl(p-methyl phenyl)sulfonium bis(carbomethoxy)methylide (4a) was prepared in 61% yield on a 4.8 g scale via a one-pot two-step process. Treatment of 4-methylbenzenethiol with C2F5I generated pentafluoroethyl 4-methylphenyl thioether.[8] The crude product without further purification was allowed to react with dimethyl diazomalonate in the presence of Rh2(esp)2 (0.1 mol%; esp=α, α, α', α'-tetramethyl-1, 3-benzenedipropionic acid) in dichloromethane after 2 h at 40 ℃ to afford compound 4a in 61% yield.[1] Likewise, pentafluoroethyl(4-nitrophenyl)sulfonium bis(carbomethoxy)methylide (4b) was synthesized by the same procedure in 23% yield on a 6.8 g scale (Figure 3). Both compounds 4a~4b are airand moisture-stable, crystalline white solids. No decomposition was observed after storing on bench for one-month.

    Figure 3

    Figure 3.  Preparation of pentafluoroethyl-substituted sulfonium ylides 4a and 4b

    To probe whether pentafluoroethyl-substituted sulfonium ylides 4a/4b can act as electrophilic pentafluoro-ethylating reagents, we first investigatd the reaction of β-ketoesters with compound 4a/4b in the presence of a variety of different bases and solvents. After a quick screening of the reaction conditions, it was found that the highest yield for the reaction of β-ketoester with 4a in DMSO was 64% when DBU was used as the base. The yield was greatly increased to 93% when compound 4b was used as the electrophilic pentafluoroethylating reagent. As shown in Table 1, a variety of five- or six-membered cyclic β-ketoesters can be pentafluoroethylated in good yields under mild conditions. Notably, the steric hinderance of the ester group does not have a significant effect on the yield of the reaction. Ester derived from methanol, ethanol, isopropanol or adamanol gave the desired corresponding pentafluoroethylated compounds in 82%~98% yields (5c~5f).

    Table 1

    Table 1.  Scope for pentafluoroethylation of β-ketoesters with reagent 4ba
    下载: 导出CSV

    Encouraged by the excellent reactivity of sulfonium ylide 4b with β-ketoesters, we next studied copper-medi- ated pentafluoroethylation of aryl iodides, as inspired by Xiao's copper-mediated reductive trifluoromethylation of aryl iodides with trifluoromethyl-substituted sulfonium salt.[9] For this reaction, reagent 4a was more effective than reagent 4b. It was discovered that solvent played an important role on the conversion of the pentafluoroethylation reaction. Specifically, reactions in DMF, N-methyl pyrrolidone (NMP) and dimethyl sulfoxide (DMSO) occurred in full conversion, while reactions in other solvents such as acetonitrile, dichloromethane, tetrahydrofuran (THF), or toluene occurred in much lower conversions. The reaction was sensitive to the reaction temperature. The highest yield was obtained when the reaction was conducted at 60 ℃. Common functional groups such as ester (6c), enolizable ketone (6b), nitro (6d), cyano (6e) and halogens including chloride, bromide (6f) were compatible. In addition, heteroaryl iodides including iodo pyridine (6h), pyrimidine (6i), benzothiophene (6k) or carbazole (6l) were all pentafluoroethylated in excellent yields (Table 2).

    Table 2

    Table 2.  Pentafluoroethylation of aryl iodides with reagent 4aa
    下载: 导出CSV

    Having successfully developed two pentafluoroethylating reactions with reagent 4a/4b, we next tried to direct pentafluoroethylate the arene C—H bonds, with anticipation that a pentafluoroethyl radical could be generated upon irradication by blue LED light.[10] After a quick screening of the reaction conditions, the reaction worked smoothly to give pentafluoroethylated 1-phenylpyrrole in 70% yield, when the reaction was conducted in DMSO using 1, 8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the base. Interestingly, under the same reaction condition conditions, the formation of compound 7a was not observed when reagent 4a was used. Control experiment showed that the reaction did not occur in the absence of blue LED and the yield of the product decreased to 20% in the absence of DBU. In addition, the yield of the reaction decreased significantly to 6% when 1.0 equivalent of radical inhibitor 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO) was added, which suggests a radical pathway. Based on these results, a mechanism for this reaction was proposed. A donor-acceptor between reagent 4b and DBU is initially generated. Upon irradiation with blue LED, a pentafluoroethyl radical is formed, which reacts with arene to give pentafluoroethylated compounds. Because the electrophilic nature of the pentafluoroethyl group, only the electron-rich arenes such as indole and pyrrole with different substitution groups can be converted to pentafluoroethylated products in moderate to good yields (Table 3).

    Table 3

    Table 3.  Pentafluoroethylation of electron-rich heteroarenes with reagent 4ba
    下载: 导出CSV

    In summary, we have successfully invented two electrophilic pentafluoroethylating reagents 4a/4b from readily available starting materials. Importantly, reagents 4a/4b powerful electrophilic pentafluoroethylating reagents are able to pentafluoroethylate β-ketoesters, aryl iodides and heteroarenes to give the corresponding pentafluoroethylated products in high yields under mild conditions. Further expansion of the applications of these reagents is undergoing in our laboratory.

    All solvents were purified by standard method. 1H NMR spectra were recorded on a 500 MHz, 400 MHz or 300 MHz. 19F NMR were recorded on a 376 MHz or 282 MHz spectrometer. 1H NMR and 13C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 and 19F NMR chemical shifts were determined relative to CFCl3 as inter standard. Flash column chromatograph was carried out using 300~400 mesh silica gel at medium pressure.

    Alkyl trifluoromethylthioethers were prepared according to procedure reported by Boiko.[8] All other reagents were received from commercial sources. Solvents were freshly dried and degassed according to the purification handbook Purification of Laboratory Chemicals before using.

    4-Methylphenyl pentafluoroethyl thioether (4.84 g, 20.0 mmol), Rh2(esp)2 (15 mg, 0.10 mol%) and CH2Cl2 (60 mL) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under N2. Dimethyl diazomalonate (3.2 g, 20 mmol) was added dropwise. The tube was quickly sealed with a rubber stopper. The mixture was stirred at 40 ℃ for 2 h. The mixture was then cooled to room temperature, and concentrated in vacuo. The residue was purified by flash chromatography [Eluent: V(ethyl acetate)/V(petroleum ether)=1/3, Rf=0.3] to give penta- fluoroethyl-(4-methylphenyl) bis(carbomethoxy) methylide (4a) as a white solid (4.5 g, 61%). White solid, m.p. 32~34 ℃; 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.81 (d, J=8.1 Hz, 2H), 7.34 (d, J=8.3 Hz, 2H), 3.75 (s, 6H), 2.43 (s, 3H); 19F NMR (375 MHz, CDCl3) δ: -81.2 (s, 3F), -97.9 (d, J=206.6 Hz, 1F), -101.4 (d, J=206.6 Hz, 1F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 165.9, 144.8, 131.0, 130.8, 122.7, 117.8 (qt, J=288.1, 34.0 Hz), 111.5~118.9 (m), 55.0, 51.5, 21.4; IR (KBr) νmax: 2993, 2953, 2844, 2251, 1735, 1701, 1670, 1594, 1491, 1436, 1403, 1331, 1229, 1189, 1127, 1089, 1015, 964, 922, 810, 772, 747, 734, 700, 635, 627, 592, 547, 517 cm-1; MS (ESI): 373 (M++H). HRMS (ESI) calcd for C14H14F5O4S: 373.0527 (M++H), found 373.0528.

    4-Nitrophenyl pentafluoroethyl thioether (6.8 g, 25 mmol), Rh2(esp)2 (19 mg, 0.10 mol%) and CH2Cl2 (60 mL) were placed to an oven-dried Schlenk tube that was equipped with a stirring bar under N2. Dimethyl diazomalonate (5.9 g, 37 mmol) was added dropwise. The tube was quickly sealed with a rubber stopper. The mixture was stirred at 40 ℃ for 12 h. The mixture was then cooled to room temperature, and concentrated in vacuo. The residue was purified by flash chromatography [Eluent: V(ethyl acetate)/V(petroleum ether)=1/2, Rf=0.5] to give pentafluoroethyl-(4-nitrophenyl) bis(carbomethoxy) methylide (4b) as yellow liquid (2.3 g, 23%). Yellow liquid. 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.39 (d, J=8.4 Hz, 2H), 8.03 (d, J=8.5 Hz, 2H), 3.74 (s, 6H); 19F NMR (375 MHz, CDCl3) δ: -81.0 (s, 3F), -96.3 (d, J=202.2 Hz, 1F), -100.0 (dq, J=202.4 Hz, 3.7 Hz, 1F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 165.4, 150.3, 132.5, 131.1, 124.9, 117.5 (qt, J=288.3, 33.8 Hz), 119.6~111.3 (m), 52.7, 52.0; IR (KBr) νmax: 3110, 3001, 2956, 2847, 1739, 1710, 1670, 1604, 1580, 1533, 1477, 1437, 1400, 1331, 1228, 1128, 1091, 1010, 963, 916, 854, 800, 773, 746, 723, 679, 636, 625, 596, 544 cm-1; MS (EI) m/z: 246 (100), 284, 403 (M+). HRMS (EI) calcd for C13H10O6F5NS: 403.0149, found 403.0142.

    β-Ketoester (0.5 mmol), DBU (114 mg, 0.750 mmol, 1.50 equiv.) and 4b (403 mg, 1.00 mmol, 2.00 equiv.) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under N2. The tube added 3.0 mL of freshly distilled DMSO and the tube quickly sealed with a rubber stopper. The mixture was stirred at room temperature for 12 h. 20 mL of water and 40 mL of ether were added to the mixture, the organic phase was separated and extracted with water (10 mL×5), dried over anhydrous Na2SO4, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel.

    Methyl 6-methyl-1-oxo-2-(pentafluoroethyl)-2, 3-dihy- dro-1H-indene-2-carboxylate (5a):[3] Eluent: V(ethyl acetate)/V(petroleum ether)=1/10, Rf=0.4. Yellow liquid (164 mg, 99%). 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.59 (s, 1H), 7.49 (d, J=7.7 Hz, 1H), 7.40 (d, J=7.8 Hz, 1H), 3.83 (d, J=17.6 Hz, 1H), 3.76 (s, 3H), 3.54 (d, J=17.6 Hz, 1H), 2.39 (s, 3H); 19F NMR (375 MHz, CDCl3) δ: -79.2 (s, 3F), -114.8 (d, J=278.6 Hz, 1F), -116.1 (d, J=278.6 Hz, 1F); IR (KBr) νmax: 2959, 2929, 2868, 1762, 1728, 1620, 1588, 1497, 1436, 1384, 1335, 1213, 1097, 1075, 1031, 993, 911, 876, 853, 820, 791, 755, 736, 688, 648, 619, 535 cm-1; MS (EI) m/z: 243 (100), 263, 291, 322 (M+). HRMS (EI) calcd for C14H11F5O3: 322.0628, found 322.0622.

    Methyl 6-methoxy-1-oxo-2-(pentafluoroethyl)-2, 3-dihy- dro-1H-indene-2-carboxylate (5b):[3] Eluent: V(ethyl acetate)/V(petroleum ether)=1/10, Rf=0.3. Yellow solid (140 mg, 83%), m.p. 78~80 ℃; 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.45 (d, J=8.3 Hz, 1H), 7.31 (d, J=7.3 Hz, 1H), 7.26 (s, 1H), 3.88 (s, 3H), 3.83 (s, 3H), 3.89 (d, J=17.4 Hz, 1H), 3.57 (d, J=17.4 Hz, 1H); 19F NMR (375 MHz, CDCl3) δ: -79.2 (s, 3F), -114.7 (d, J=278.6 Hz, 1F), -115.9 (d, J=278.7 Hz, 1F); IR (KBr) νmax: 3072, 3011, 2973, 2942, 2834, 1738, 1716, 1614, 1586, 1498, 1452, 1439, 1429, 1349, 1336, 1278, 1219, 1189, 1160, 1136, 1116, 1090, 1060, 1045, 1021, 990, 973, 959, 921, 892, 853, 837, 817, 774, 758, 743, 700, 684, 674, 639, 604, 560, 528 cm-1; MS (EI) m/z: 259, 279, 338 (100, M+). HRMS (EI) calcd for C14H11F5O4 338.0578, found 338.0574.

    Methyl 1-oxo-2-(pentafluoroethyl)-2, 3-dihydro-1H-in- dene-2-carboxylate (5c):[3] Eluent: V(ethyl acetate)/ V(petroleum ether)=1/10, Rf=0.3. Yellow liquid (135 mg, 88%). 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.81 (d, J=7.6 Hz, 1H), 7.68 (t, J=7.4 Hz, 1H), 7.52 (d, J=7.5 Hz, 1H), 7.44 (t, J=7.4 Hz, 1H), 3.90 (d, J=17.7 Hz, 1H), 3.78 (s, 3H), 3.60 (d, J=17.6 Hz, 1H); 19F NMR (375 MHz, CDCl3) δ: -79.2 (s, 3F), -114.7 (d, J=278.8 Hz, 1F), -116.1 (d, J=278.8 Hz, 1F); IR (KBr) νmax: 3041, 2960, 2849, 1735, 1608, 1593, 1523, 1480, 1466, 1436, 1338, 1212, 1098, 1074, 1030, 992, 977, 914, 892, 867, 820, 794, 770, 753, 689, 637, 611, 560, 532 cm-1; MS (EI) m/z: 229 (100), 249, 277, 308 (M+). HRMS (EI) calcd for C13H9F5O3 308.0472, found 308.0471.

    Ethyl 1-oxo-2-(pentafluoroethyl)-2, 3-dihydro-1H-inde- ne-2-carboxylate (5d):[3] Eluent: V(ethyl acetate)/ V(petro- leum ether)=1/10, Rf=0.4. Yellow liquid (132 mg, 82%). 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.81 (d, J=7.6 Hz, 1H), 7.68 (t, J=7.4 Hz, 1H), 7.52 (d, J=7.7 Hz, 1H), 7.44 (t, J=7.3 Hz, 1H), 4.34~4.15 (m, 2H), 3.90 (d, J=17.6 Hz, 1H), 3.58 (d, J=17.6 Hz, 1H), 1.25 (t, J=7.1 Hz, 3H); 19F NMR (375 MHz, CDCl3) δ: -79.0 (s, 3F), -114.4 (d, J=278.7 Hz, 1F), -116.0 (d, J=278.7 Hz, 1F); IR (KBr) νmax: 2987, 1732, 1608, 1593, 1479, 1466, 1446, 1369, 1332, 1212, 1097, 1074, 1029, 974, 911, 866, 768, 688, 636 cm-1; MS (EI) m/z: 229 (100), 249, 277, 322 (M+). HRMS (EI) calcd for C14H11F5O3: 322.0628, found 322.0623.

    Isopropyl 1-oxo-2-(pentafluoroethyl)-2, 3-dihydro-1H- indene-2-carboxylate (5e):[3] Eluent: V(ethyl acetate)/ V(petroleum ether)=1/10, Rf=0.6. Yellow liquid (165 mg, 98%). 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.80 (d, J=7.7 Hz, 1H), 7.67 (t, J=7.1 Hz, 1H), 7.52 (d, J=7.6 Hz, 1H), 7.43 (t, J=7.3 Hz, 1H), 5.12~4.99 (m, 1H), 3.87 (d, J=17.6 Hz, 1H), 3.57 (d, J=17.6 Hz, 1H), 1.22 (d, J=4.1 Hz, 6H); 19F NMR (375 MHz, CDCl3) δ: -78.9 (s, 3F), -114.2 (d, J=278.5 Hz, 1F), -115.9 (d, J=278.5 Hz, 1F); IR (KBr) νmax: 2987, 2941, 1732, 1608, 1594, 1467, 1390, 1378, 1335, 1266, 1148, 1103, 1074, 1025, 975, 923, 897, 866, 836, 793, 768, 753, 684, 634, 533 cm-1; MS (EI) m/z: 248 (100), 277, 294, 336 (M+). HRMS (EI) calcd for C15H13F5O3: 336.0785, found 336.0781.

    Adamantan-1-yl 1-oxo-2-(pentafluoroethyl)-2, 3-dihy- dro-1H-indene-2-carboxylate (5f): Eluent: V(ethyl acetate)/V(petroleum ether)=1/10, Rf=0.6. Yellow liquid (190 mg, 89%).1H NMR (400 MHz, CDCl3, 293 K) δ: 7.81 (d, J=7.6 Hz, 1H), 7.66 (t, J=7.3 Hz, 1H), 7.51 (d, J=7.6 Hz, 1H), 7.43 (t, J=7.5 Hz, 1H), 3.82 (d, J=17.5 Hz, 1H), 3.54 (d, J=17.5 Hz, 1H), 2.14 (s, 3H), 2.06 (s, 6H), 1.62 (s, 6H); 19F NMR (375 MHz, CDCl3) δ: -78.6 (s, 3F), -113.7 (d, J=278.3 Hz, 1F), -115.8 (d, J=278.2 Hz, 1F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 192.8, 162.6 (d, J=7.6 Hz), 151.6, 136.0, 134.2, 128.2, 126.1, 125.3, 84.7, 77.4, 77.0, 76.7, 63.4, 63.3, 63.2, 63.0, 40.8, 35.9, 33.6 (m), 30.9; IR (KBr) νmax: 2915, 2855, 1728, 1608, 1593, 1479, 1466, 1321, 1258, 1212, 1096, 1074, 7049, 1024, 974, 964, 940, 912, 884, 863, 771, 734, 688, 648 cm-1; MS (EI) m/z: 135 (100), 428 (M+). HRMS (EI) calcd for C22H21F5O3: 428.1411, found 428.1409.

    Methyl 5-chloro-1-oxo-2-(pentafluoroethyl)-2, 3-dihy- dro-1H-indene-2-carboxylate (5g):[3] Eluent: V(ethyl acetate)/V(petroleum ether)=1/10, Rf=0.5. Yellow solid (150 mg, 88%), m.p. 50~52 ℃; 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.73 (d, J=8.1 Hz, 1H), 7.52 (s, 1H), 7.41 (d, J=8.1 Hz, 1H), 3.88 (d, J=17.8 Hz, 1H), 3.79 (s, 3H), 3.57 (d, J=17.9 Hz, 1H); 19F NMR (375 MHz, CDCl3) δ: -79.2 (s, 3F), -114.6 (d, J=278.9 Hz, 1F), -116.2 (d, J=278.9 Hz, 1F); IR (KBr) νmax: 2960, 1764, 1735, 1601, 1586, 1436, 1323, 1262, 1209, 1152, 1100, 1070, 1029, 992, 976, 892, 848, 826, 789, 735, 636, 613, 534 cm-1; MS (EI) m/z: 263, 283, 311, 342 (100) (M+), 344 (34.7). HRMS (EI) calcd for C13H8F5O3Cl: 342.0082, found 342.0075.

    Methyl 7-bromo-1-oxo-2-(pentafluoroethyl)-1, 2, 3, 4-te- trahydronaphthalene-2-carboxylate (5h):[3] Eluent: V(ethyl acetate)/V(petroleum ether)=1/10, Rf=0.3. White solid (162 mg, 84%), m.p. 119~121 ℃; 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.19 (s, 1H), 7.62 (d, J=8.0 Hz, 1H), 7.14 (d, J=8.1 Hz, 1H), 3.75 (s, 3H), 2.98 (s, 2H), 2.86 (d, J=13.7 Hz, 1H), 2.54~2.39 (m, 1H); 19F NMR (375 MHz, CDCl3) δ: -76.5 (s, 3F), -111.3 (d, J=279.9 Hz, 1F), -112.8 (d, J=280.0 Hz, 1F); IR (KBr) νmax: 3078, 3058, 2964, 1729, 1705, 1589, 1476, 1456, 1437, 1405, 1351, 1310, 1285, 1271, 1219, 1171, 1150, 1132, 1109, 1080, 1065, 1014, 976, 905, 890, 859, 833, 746, 721, 657, 611, 541 cm-1; MS (EI) m/z: 281 (100), 283, 400 (25.4), 402 (25.4). HRMS (EI) calcd for C14H10F5O3Br 399.9733, found 399.9732.

    Methyl 4-bromo-1-oxo-2-(Pentafluoroethyl)-2, 3-dihy- dro-1H-indene-2-carboxylate (5i): Eluent: V(ethyl acetate)/V(petroleum ether)=1/10, Rf=0.47. Yellow liquid (143 mg, 74%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.85 (d, J=7.7 Hz, 1H), 7.77 (d, J=7.5 Hz, 1H), 7.36 (t, J=7.7 Hz, 1H), 3.83 (d, J=19.0 Hz, 1H), 3.80 (s, 3H), 3.50 (d, J=18.2 Hz, 1H); 19F NMR (375 MHz, CDCl3) δ: -79.0 (s, 3F), -114.4 (d, J=279.0 Hz, 1F), -115.9 (d, J=279.1 Hz, 1F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 191.5, 164.3 (d, J=7.1 Hz), 151.1, 139.0, 135.8, 130.2, 124.2, 121.5, 118.7 (qt, J=288.5, 36.1 Hz), 116.7~110.3 (m), 62.3 (dd, J=22.9, 18.8 Hz), 54.01, 34.4 (d, J=2.7 Hz); IR (KBr) νmax: 2959, 1766, 1735, 1598, 1459, 1437, 1332, 1254, 1216, 1173, 1128, 1101, 1077, 1028, 976, 908, 881, 809, 784, 755, 730, 644 cm-1; MS (EI) m/z: 307 (100), 327, 355, 386 (67.3), 388 (69.1). HRMS (EI) calcd for C13H8F5O3Br 385.9577, found 385.9570.

    Aryl iodide (0.5 mmol), Cu powder (48 mg, 0.75 mmol, 1.5 equiv.) and 4a (279 mg, 0.750 mmol, 1.50 equiv.) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under N2. 3.0 mL of freshly distilled DMF was added and the tube was quickly sealed with a rubber stopper. The mixture was stirred at 60 ℃ for 12 h. 20 mL of water and 40 mL of ether were added to the mixture. The organic phase was separated and extracted with water (10 mL×5), dried over anhydrous Na2SO4, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel.

    4-(Pentafluoroethyl)-1, 1'-biphenyl (6a):[3] Eluent: petroleum ether (Rf=0.6). White solid (130 mg, 96%), m.p. 69~71 ℃; 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.81~7.68 (m, 4H), 7.65 (d, J=7.2 Hz, 2H), 7.52 (t, J=7.4 Hz, 2H), 7.49~7.41 (m, 1H); 19F NMR (375 MHz, CDCl3) δ: -84.8 (s, 3F), -114.7 (s, 2F); IR (KBr) νmax: 3084, 1612, 1569, 1490, 1453, 1407, 1339, 1295, 1273, 1204, 1165, 1150, 1131, 1114, 1092, 1024, 1006, 975, 954, 917, 840, 768, 739, 724, 690, 655, 628 cm-1; MS (EI) m/z: 203 (100), 272. HRMS (ESI) calcd for C14H9F5 272.0624, found 272.0616.

    1-(4-(Pentafluoroethyl)phenyl)ethanone (6b)[3] Eluent: V(ethyl acetate)/V(petroleum ether)=1/20, Rf=0.3. Yellow liquid (110 mg, 92%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.06 (d, J=8.0 Hz, 2H), 7.70 (d, J=8.2 Hz, 2H), 2.64 (s, 3H); 19F NMR (375 MHz, CDCl3) δ: -84.8 (s, 3F), -115.6 (s, 2F); IR (KBr) νmax: 1697, 1578, 1509, 1410, 1361, 1336, 1288, 1266, 1209, 1149, 1099, 1075, 1021, 976, 957, 912, 833, 744, 725, 647, 607, 590 cm-1; MS (EI) m/z: 223 (100), 238. HRMS (EI) calcd for C10H7F5O 238.0417, found 238.0420.

    Methyl 4-(pentafluoroethyl)benzoate (6c):[3] Eluent: V(ethyl acetate)/V(petroleum ether)=1/20, Rf=0.4. Yellow liquid (119 mg, 94%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.16 (d, J=8.4 Hz, 2H), 7.68 (d, J=8.3 Hz, 2H), 3.96 (s, 3H); 19F NMR (375 MHz, CDCl3) δ: -84.7 (s, 3F), -115.5 (s, 2F); IR (KBr) νmax: 3005, 2958, 2850, 1736, 1617, 1582, 1514, 1439, 1413, 1338, 1314, 1285, 1208, 1150, 1096, 1024, 976, 964, 860, 828, 773, 759, 712, 696, 639 cm-1; MS (EI) m/z: 223 (100), 254. HRMS (EI) calcd for C10H7F5O2 254.0366, found 254.0364.

    1-Nitro-4-(pentafluoroethyl)benzene (6d):[3] Eluent: V(ethyl acetate)/V(petroleum ether)=1/20, Rf=0.5. Yellow liquid (110 mg, 92%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.38 (d, J=8.5 Hz, 2H), 7.83 (d, J=8.5 Hz, 2H); 19F NMR (282 MHz, CDCl3) δ: -84.9 (s, 3F), -115.9 (s, 2F); IR (KBr) νmax: 3124, 3092, 2879, 1617, 1537, 1416, 1355, 1287, 1208, 1153, 1098, 1019, 977, 961, 911, 853, 760, 738, 710, 692, 636 cm-1; MS (EI) m/z: 145, 172, 203, 219, 241. HRMS (EI) calcd for C8H4NF5O2: 241.0162, found 241.0157.

    4-(Pentafluoroethyl)benzonitrile (6e):[3] Eluent: V(ethyl acetate)/V(petroleum ether)=1/20, Rf=0.7. Yellow liquid (106 mg, 96%). 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.82 (d, J=8.0 Hz, 2H), 7.74 (d, J=8.2 Hz, 2H); 19F NMR (375 MHz, CDCl3) δ: -89.0 (s, 3F), -120.2 (s, 2F); IR (KBr) νmax: 3108, 3063, 2237, 1931, 1616, 1577, 1508, 1412, 1334, 1286, 1262, 1208, 1154, 1100, 1024, 976, 959, 914, 840, 746, 730, 645, 601, 554 cm-1; MS (EI) m/z: 152 (100), 221. HRMS (EI) calcd for C9H4F5N 221.0264, found 221.0267.

    4-Bromo-2-chloro-1-(pentafluoroethyl)benzene (6f): Eluent: petroleum ether, Rf=0.9; Colorless liquid (141 mg, 91%). 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.70 (s, 1H), 7.54 (d, J=9.3 Hz, 1H), 7.48 (d, J=8.5 Hz, 1H); 19F NMR (375 MHz, CDCl3) δ: -87.3 (s, 3F), -115.1 (s, 2F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 134.8, 134.3 (t, J=2.6 Hz), 130.7 (t, J=8.3 Hz), 130.3, 127.0, 125.4 (t, J=46.5 Hz), 119.0 (qt, J=287.1, 38.4 Hz), 116.1~110.9 (m); IR (KBr) νmax: 3100, 2927, 2855, 1587, 1557, 1478, 1377, 1334, 1285, 1212, 1168, 1132, 1111, 1089, 1059, 969, 954, 874, 821, 792, 746, 667, 640 cm-1; MS (EI) m/z: 241 (100), 308 (21.24), 310 (28.34). HRMS (EI) calcd for C8H3F5BrCl 307.9027, found 307.9023.

    1-(Pentafluoroethyl)naphthalene (6g):[11] Eluent: petroleum ether, Rf=0.8. Colorless liquid (108 mg, 88%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.28 (d, J=8.1 Hz, 1H), 8.05 (d, J=8.1 Hz, 1H), 7.93 (d, J=7.6 Hz, 1H), 7.86 (d, J=7.2 Hz, 1H), 7.73~7.40 (m, 3H); 19F NMR (375 MHz, CDCl3) δ: -88.2 (s, 3F), -113.1 (s, 2F).

    5-Bromo-2-methoxy-3-(pentafluoroethyl)pyridine (6h): Eluent: petroleum ether, Rf=0.6. Colorless liquid (136 mg, 89%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.38 (s, 1H), 7.91 (s, 1H), 3.99 (s, 3H); 19F NMR (375 MHz, CDCl3) δ: -87.4 (s, 3F), -117.6 (s, 2F); IR (KBr) νmax: 2960, 2931, 2859, 1592, 1566, 1476, 1416, 1400, 1309, 1272, 1246, 1205, 1147, 1119, 1081, 1014, 985, 912, 846, 774, 757, 694 cm-1; MS (EI) m/z: 225 (100), 305 (2.72), 307 (2.28). HRMS (EI) calcd for C8H5NF5OBr 304.9475, found 304.9474.

    2, 4-Dimethoxy-5-(pentafluoroethyl)pyrimidine (6i): Eluent: V(ethyl acetate)/V(petroleum ether)=1/10, Rf=0.5. Colorless liquid (123 mg, 95%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.40 (s, 1H), 4.03 (s, 6H); 19F NMR (375 MHz, CDCl3) δ: -84.6 (s, 3F), -113.8 (s, 2F); IR (KBr) νmax: 3003, 2963, 1605, 1564, 1478, 1406, 1350, 1302, 1269, 1250, 1207, 1131, 1097, 1066, 1013, 977, 954, 805, 754, 698, 680, 657, 586 cm-1; MS (EI) m/z: 258 (100). HRMS (EI) calcd for C8H7N2F5O2: 258.0428, found 258.0423.

    9-(Pentafluoroethyl)phenanthrene (6j): Eluent: petroleum ether, Rf=0.7. White solid (130 mg, 88%), m.p. 54~56 ℃. 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.75 (d, J=8.2 Hz, 1H), 8.67 (d, J=8.4 Hz, 1H), 8.35 (d, J=7.6 Hz, 1H), 8.18 (s, 1H), 7.96 (d, J=7.9 Hz, 1H), 7.70-7.73 (m, 4H); 19F NMR (375 MHz, CDCl3) δ: -82.8 (s, 3F), -108.1 (s, 2F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 131.8, 131.0, 130.0, 129.9, 129.8, 129.4, 129.1, 127.5, 127.3, 127.1, 125.7~125.5 (m), 123.2, 122.6; MS (EI) m/z: 227, 296 (100). HRMS (EI) calcd for C16H9F5 296.0624, found 296.0622.

    4-(Pentafluoroethyl)dibenzo[b, d]thiophene (6k): Eluent: petroleum ether, Rf=0.6. Colorless liquid (148 mg, 98%). 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.29 (d, J=7.8 Hz, 1H), 8.14 (d, J=7.6 Hz, 1H), 7.86 (d, J=7.2 Hz, 1H), 7.70 (d, J=7.5 Hz, 1H), 7.58~7.44 (m, 3H); 19F NMR (375 MHz, CDCl3) δ: -84.3 (s, 3F), -113.9 (s, 2F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 139.5~139.3 (m), 137.6, 137.4, 133.9, 127.6, 126.1 (t, J=6.9 Hz), 124.8, 124.7, 124.3, 122.3, 121.6; IR (KBr) νmax: 3068, 2924, 1942, 1819, 1458, 1446, 1398, 1336, 1325, 1280, 1250, 1209, 1152, 1135, 1099, 1084, 1052, 1023, 979, 938, 910, 854, 813, 798, 751, 730, 714, 707, 658, 630 cm-1; MS (EI) m/z: 233 (100), 302. HRMS (EI) calcd for C14H7F5S 302.0189, found 302.0186.

    3-(Pentafluoroethyl)-9-phenyl-9H-carbazole (6l):[11] Eluent: petroleum ether, Rf=0.5. Colorless liquid (190 mg, 99%). 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.50 (s, 1H), 8.25 (d, J=7.7 Hz, 1H), 7.68 (t, J=8.8 Hz, 3H), 7.60~7.57 (m, 3H), 7.53~7.50 (m, 2H), 7.47 (t, J=6.8 Hz, 1H), 7.41 (t, J=6.8 Hz, 1H); 19F NMR (375 MHz, CDCl3) δ: -84.7 (s, 3F), -112.5 (s, 2F); IR (KBr) νmax: 3066, 2923, 1633, 1600, 1504, 1490, 1459, 1437, 1366, 1335, 1321, 1259, 1238, 1204, 1146, 1122, 1110, 1085, 1028, 1015, 979, 940, 908, 893, 815, 803, 762, 747, 734, 699, 672, 641 cm-1; MS (EI) m/z: 292 (100), 361. HRMS (EI) calcd for C20H12NF5 361.0890, found 361.0884.

    Heteroarene (0.5 mmol), DBU (114 mg, 0.750 mmol, 1.50 equiv.) and 4b (302 mg, 0.750 mmol, 1.50 equiv.) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under N2. 10.0 mL of freshly distilled DMSO was added and the tube was quickly sealed with a rubber stopper. The mixture was stirred under LED blue for 12 h. 20 mL of water and 40 mL of ether were added to the mixture and the organic phase was separated and extracted with water (10 mL×5), dried over anhydrous Na2SO4, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel.

    2-(Pentafluoroethyl)-1-phenyl-1H-pyrrole (7a): Eluent: petroleum ether, Rf=0.7. Colorless liquid (91 mg, 70%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.45~7.42 (m, 3H), 7.39~7.36 (m, 2H), 6.90~6.89 (m, 1H), 6.73 (s, 1H), 6.32~6.30 (m, 1H); 19F NMR (375 MHz, CDCl3) δ: -83.1 (t, 3F), -102.7 (s, 2F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 139.6, 128.8, 128.7, 128.6, 127.2, 114.4, 108.6; IR (KBr) νmax: 3072, 2927, 1598, 1543, 1501, 1461, 1434, 1368, 1329, 1270, 1208, 1111, 1088, 1073, 1050, 1029, 1013, 1001, 926, 883, 813, 768, 745, 734, 697 cm-1; MS (EI) m/z: 192 (100), 261. HRMS (EI) calcd for C12H8NF5: 261.0577, found 261.0583.

    1-(4-Chlorophenyl)-2-(pentafluoroethyl)-1H-pyrrole (7b): Eluent: petroleum ether, Rf=0.7. Yellow liquid (100 mg, 68%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.44~7.38 (m, 2H), 7.31 (d, J=8.7 Hz, 2H), 6.86~6.85 (m, 1H), 6.74~6.73 (m, 1H), 6.34~6.30 (m, 1H); 19F NMR (375 MHz, CDCl3) δ: -83.1 (t, J=2.7 Hz, 3F), -102.8 (s, 2F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 138.0, 134.6, 128.9, 128.5, 128.4, 114.7~114.5 (m), 109.0; IR (KBr) νmax: 2956, 2926, 2855, 1545, 1497, 1461, 1435, 1408, 1368, 1331, 1270, 1210, 1130, 1110, 1093, 1050, 1039, 1019, 1011, 924, 883, 836, 749, 734, 716, 645 cm-1; MS (EI) m/z: 226 (100), 261, 295 (49.8), 297 (17.0). HRMS (EI) calcd for C12H7NF5Cl: 295.0187, found 295.0192.

    1-(3-Bromophenyl)-2-(pentafluoroethyl)-1H-pyrrole (7c): Eluent: petroleum ether, Rf=0.6. Colorless liquid (122 mg, 72%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.58 (dt, J=6.9, 1.9 Hz, 1H), 7.56 (s, 1H), 7.37~7.28 (m, 2H), 6.87 (dd, J=2.5, 1.3 Hz, 1H), 6.74 (dd, J=2.5, 1.2 Hz, 1H), 6.32 (dd, J=3.6, 3.0 Hz, 1H); 19F NMR (375 MHz, CDCl3) δ: -83.1 (t, J=2.7 Hz, 3F), -102.7 (s, 2F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 140.6, 131.8, 130.4, 129.9, 128.5, 125.9, 122.0, 114.8~114.6 (m), 109.1; IR (KBr) νmax: 3131, 1593, 1578, 1545, 1486, 1459, 1438, 1366, 1329, 1272, 1209, 1113, 1090, 1051, 1041, 1018, 931, 882, 814, 787, 737, 690, 658 cm-1; MS (EI) m/z: 45 (100), 191, 226, 339 (18.1), 341 (15.6). HRMS (EI) calcd for C12H7NF5Br 338.9682, found 338.9679.

    2-(Pentafluoroethyl)-1-(4-(trifluoromethyl)phenyl)-1H-pyrrole (7d): Eluent: petroleum ether, Rf=0.7. Colorless liquid (111 mg, 68%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.72 (d, J=8.2 Hz, 2H), 7.51 (d, J=8.0 Hz, 2H), 6.90 (s, 1H), 6.77 (s, 1H), 6.36 (t, J=2.7 Hz, 1H); 19F NMR (375 MHz, CDCl3) δ: -62.7 (s, 3F), -83.2 (t, J=2.7 Hz, 3F), -102.5 (s, 2F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 143.5, 131.8 (q, J=33.0 Hz), 129.4, 128.5, 127.0 (q, J=3.4 Hz), 124.6 (q, J=272.4 Hz), 116.3~115.9 (m), 110.4; IR (KBr) νmax: 3137, 1619, 1547, 1522, 1463, 1436, 1418, 1366, 1327, 1271, 1212, 1172, 1134, 1108, 1090, 1069, 1050, 1040, 1020, 1012, 925, 883, 851, 735, 700 cm-1; MS (EI) m/z: 260 (100), 329. HRMS (EI) calcd for C13H7NF8 329.0451, found 329.0452.

    1-(4-Fluorophenyl)-2-(pentafluoroethyl)-1H-pyrrole (7e): Eluent: petroleum ether, Rf=0.6. Colorless liquid (92 mg, 66%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.34 (dd, J=8.2, 4.9 Hz, 2H), 7.11 (t, J=8.5 Hz, 2H), 6.86 (s, 1H), 6.72 (s, 1H), 6.31 (t, J=2.8 Hz, 1H); 19F NMR (375 MHz, CDCl3) δ: -83.2 (t, J=2.6 Hz, 3F), -102.9 (s, 2F) -112.5~-112.6 (m, 1F); 13C NMR (101 MHz, CDCl3, 293 K) δ 163.7, 161.2, 135.6 (d, J=2.9 Hz), 129.1 (d, J=8.8 Hz), 128.8, 115.7 (d, J=22.9 Hz), 114.6~114.4 (m), 108.8; IR (KBr) νmax: 3124, 2924, 1605, 1545, 1515, 1464, 1436, 1367, 1331, 1271, 1209, 1155, 1129, 1109, 1089, 1050, 1012, 926, 883, 843, 819, 746, 734 cm-1; MS (EI) m/z: 210 (100), 279. HRMS (EI) calcd for C12H7NF6: 279.0483, found 279.0474.

    2-(4-Chlorophenyl)-3-(pentafluoroethyl)-1H-indole (7f): Eluent: V(ethyl acetate)/V(petroleum ether)=1/15, Rf=0.3. White solid (97 mg, 56%), m.p. 99~101 ℃; 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.33 (s, 1H), 7.76 (d, J=7.8 Hz, 1H), 7.45 (q, J=8.8 Hz, 4H), 7.41 (d, J=8.5 Hz, 1H), 7.31 (t, J=7.2 Hz, 1H), 7.25 (t, J=7.2 Hz, 1H); 19F NMR (375 MHz, CDCl3) δ: -84.6 (t, J=2.9 Hz, 3F), -106.5 (s, 2F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 138.5 (t, J=4.6 Hz), 135.6, 135.1, 130.8, 129.8, 128.6, 125.9 (t, J=3.4 Hz), 123.7, 121.8, 120.6, 111.0, 101.7 (t, J=27.1 Hz); IR (KBr) νmax: 3419, 3065, 2925, 1621, 1601, 1572, 1556, 1520, 1488, 1456, 1438, 1400, 1332, 1315, 1272, 1201, 1143, 1087, 1047, 1016, 932, 834, 763, 752, 725, 707, 652, 635 cm-1; MS (EI) m/z: 276 (100), 345 (69.4), 347 (23.5). HRMS (EI) calcd for C16H9NF5Cl 345.0344, found 345.0338.

    2-(3-Chloro-4-fluorophenyl)-3-(pentafluoroethyl)-1H-indole (7g): Eluent: V(ethyl acetate)/V(petroleum ether)=1/15, Rf=0.3. Yellow liquid (109 mg, 60%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.38 (s, 1H), 7.77 (d, J=7.8 Hz, 1H), 7.60 (dd, J=6.6, 1.3 Hz, 1H), 7.42 (d, J=8.0 Hz, 2H), 7.33 (t, J=7.2 Hz, 1H), 7.21~7.30 (m, 2H); 19F NMR (375 MHz, CDCl3) δ: -84.7 (t, J=3.1 Hz, 3F), -106.6 (s, 2F), -113.6 (ddd, J=8.4, 7.0, 4.6 Hz, 1F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 160.0, 157.4, 137.1 (t, J=4.4 Hz), 135.1, 131.8, 129.6 (d, J=7.2 Hz), 128.4 (d, J=4.1 Hz), 125.8 (t, J=3.0 Hz), 123.9, 122.0, 120.6, 116.6 (d, J=21.5 Hz), 111.1, 102.1 (t, J=27.2 Hz); IR (KBr) νmax: 3458, 3398, 3062, 1622, 1560, 1493, 1458, 1439, 1389, 1368, 1330, 1315, 1264, 1248, 1204, 1147, 1131, 1099, 1065, 1049, 1016, 942, 921, 890, 868, 827, 806, 763, 750, 728, 714, 694 cm-1; MS (EI) m/z: 294 (100), 363 (56.7), 365 (20.1). HRMS (EI) calcd for C16H8NF6Cl 363.0249, found 363.0247.

    2-(Naphthalen-2-yl)-3-(pentafluoroethyl)-1H-indole (7h): Eluent: V(ethyl acetate)/V(petroleum ether)=1/15, Rf=0.2. Yellow liquid (121 mg, 67%); 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.45 (s, 1H), 8.03 (s, 1H), 7.95~7.89 (m, 3H), 7.81 (d, J=7.8 Hz, 1H), 7.64 (d, J=8.3 Hz, 1H), 7.62~7.53 (m, 2H), 7.44 (d, J=7.9 Hz, 1H), 7.33 (t, J=7.1 Hz, 1H), 7.29 (d, J=8.0 Hz, 1H); 19F NMR (375 MHz, CDCl3) δ: -89.8 (t, J=3.2 Hz, 3F), -111.6 (s, 2F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 139.9 (t, J=4.4 Hz), 135.2, 133.3, 132.7, 129.1, 128.8, 128.3, 128.0, 127.8, 127.1, 126.8, 126.7, 126.1 (t, J=3.3 Hz), 123.5, 121.7, 120.6, 111.0, 101.5 (t, J=27.2 Hz); IR (KBr) νmax: 3405, 3059, 2925, 2854, 1558, 1507, 1470, 1456, 1439, 1430, 1329, 1268, 1204, 1157, 1141, 1128, 1088, 1047, 1017, 960, 931, 900, 861, 822, 793, 748, 711 cm-1; MS (EI) m/z: 361 (100). HRMS (EI) calcd for C20H12NF5 361.0890, found 361.0887.

    3-(Pentafluoroethyl)-2-phenyl-1H-indole (7i): Eluent: V(ethyl acetate)/V(petroleum ether)=1/15, Rf=0.4. White solid (95 mg, 61%), m.p. 97~99 ℃; 1H NMR (400 MHz, CDCl3, 293 K) δ: 8.34 (s, 1H), 7.77 (d, J=7.9 Hz, 1H), 7.56~7.52 (m, 2H), 7.50~7.45 (m, 2H), 7.42~7.39 (m, 1H), 7.40 (d, J=7.8 Hz, 1H), 7.33~7.27 (m, 1H), 7.27~7.22 (m, 1H); 19F NMR (375 MHz, CDCl3) δ: -84.6 (t, J=3.1 Hz, 3F), -106.5 (s, 2F); 13C NMR (101 MHz, CDCl3, 293 K) δ: 139.9 (t, J=4.4 Hz), 135.2, 133.3, 132.7, 129.1, 128.8, 128.3, 128.0, 127.8, 127.1, 126.8, 126.7, 126.1 (t, J=3.3 Hz), 123.5, 121.7, 120.6, 111.0, 101.5 (t, J=27.2 Hz); IR (KBr) νmax: 3404, 3061, 2924, 1622, 1559, 1492, 1458, 1449, 1433, 1369, 1330, 1268, 1201, 1160, 1143, 1119, 1093, 1049, 1028, 1001, 934, 770, 761, 749, 699 cm-1; MS (EI) m/z: 242 (100), 311. HRMS (EI) calcd for C16H10NF5 311.0733, found 311.0735.

    1-Methyl-3-(pentafluoroethyl)-2-phenyl-1H-indole (7j): Eluent: petroleum ether (Rf=0.3). White solid (93 mg, 57%), m.p. 77~79 ℃; 1H NMR (400 MHz, CDCl3, 293 K) δ: 7.76 (d, J=7.6 Hz, 1H), 7.48~7.46 (m, 3H), 7.40~7.32 (m, 4H), 7.27~7.24 (m, 1H), 3.49 (s, 3H); 19F NMR (375 MHz, CDCl3) δ: -84.9 (t, J=3.3 Hz, 3F), -106.5 (s, 2F); IR (KBr) νmax: 3058, 2982, 2948, 1608, 1579, 1555, 1495, 1484, 1470, 1445, 1435, 1404, 1377, 1358, 1327, 1278, 1239, 1217, 1197, 1175, 1155, 1117, 1092, 1075, 1056, 1031, 1003, 925, 918, 843, 800, 762, 750, 736, 702 cm-1; MS (EI) m/z: 256 (100), 325. HRMS (EI) calcd for C17H12NF5 325.0890, found 325.0883.

    Supporting information 1H NMR, 19F NMRand 13C NMR spectra of compounds 4a/4b, 5a~5i, 6a~6l and 7a~7j. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.

    1. [1]

      Liu, Y.-F.; Shao, X.-X.; Zhang, P.-P.; Shen, Q. Org. Lett. 2015, 17, 2752. doi: 10.1021/acs.orglett.5b01170

    2. [2]

      (a) Trost, B. M.; Melvin, L. S. Sulfur Ylide: Emerging Synthetic Intermediates, Academic Press, New York, 1975.
      (b) Aggrawal, V. K.; Winn, C. L. Acc. Chem. Res. 2004, 37, 611.
      (c) Tang, Y.; Ye, S.; Sun, X-L. Synlett 2005, 18, 2720.
      (d) Burtoloso, A. C. B.; Dias, R. M. P.; Leonarczyk, I. A. Eur.-J. Org. Chem. 2013, 5005.

    3. [3]

      Zhu, J.-S.; Liu, Y.-F.; Shen, Q. Angew. Chem., Int. Ed. 2016, 55, 9050. doi: 10.1002/anie.201603166

    4. [4]

      Liu, Y.-F.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2017, 56, 9930. doi: 10.1002/anie.201704175

    5. [5]

      (a) Yagupolskii, L. M.; Mironova, I. I.; Maletina, I. I.; Orda, V. V. Synthesis 1978, 835.
      (b) Yagupolskii, L. M. J. Fluorine Chem. 1987, 36, 1.
      (c) Umemoto, T.; Kuriu, Y.; Shuyama, H.; Miyano, O.; Nakayama, S. I. J. Fluorine Chem. 1982, 80, 695.
      (d) Umemoto, T.; Kuriu, Y.; Shuyama, H.; Miyano, O.; Nakayama, S. I. J. Fluorine Chem. 1986, 31, 37.
      (f) Zhdankin, V. V.; Kuehl, C. J. Tetrahedron Lett. 1994, 35, 1809.
      (g) Umemoto, T.; Kuriu, T. Tetrahedron Lett. 1981, 22, 5197.
      (h) Umemoto, T.; Kuriu, T. Chem. Lett. 1982, 65.

    6. [6]

      Liu, Q.-H.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2014, 79, 10434. doi: 10.1021/jo502040t

    7. [7]

      Zhu, J.-S.; Li, Y.-G.; Ni, C.-F.; Shen, Q. Chin. J. Chem. 2016, 34, 662. doi: 10.1002/cjoc.v34.7

    8. [8]

      Boiko, V. N.; Shchupak, G. M. J. Fluorine Chem. 1994, 3, 207. http://www.sciencedirect.com/science/article/pii/S0022113900808404

    9. [9]

      Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Angew. Chem., Int. Ed. 2011, 50, 1896. doi: 10.1002/anie.v50.8

    10. [10]

      (a) Cheng, Y.-Z.; Yu, S.-Y. Org. Lett. 2016, 18, 2962.
      (b) Cheng, Y.-Z.; Yuan, X.-G.; Ma, J.; Yu. S.-Y. Chem.-Eur. J. 2015, 21, 8355.

    11. [11]

      Huang, Y.-J.; Ajitha, M. J.; Huang, K.-W.; Zhang, Z.-X.; Weng, Z.-Q. Dalton Trans. 2016, 45, 8468. doi: 10.1039/C6DT00277C

  • Figure 1  Electrophilic fluoroalkylating reagents based on sulfonium ylide skeleton

    Figure 2  Previously reported electrophilic pentafluoroethylating reagents

    Figure 3  Preparation of pentafluoroethyl-substituted sulfonium ylides 4a and 4b

    Table 1.  Scope for pentafluoroethylation of β-ketoesters with reagent 4ba

    下载: 导出CSV

    Table 2.  Pentafluoroethylation of aryl iodides with reagent 4aa

    下载: 导出CSV

    Table 3.  Pentafluoroethylation of electron-rich heteroarenes with reagent 4ba

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  11
  • 文章访问数:  1666
  • HTML全文浏览量:  127
文章相关
  • 发布日期:  2019-01-25
  • 收稿日期:  2018-07-09
  • 修回日期:  2018-08-02
  • 网络出版日期:  2018-01-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章