猪粪厌氧发酵的有机酸代谢与微生物群落相关性分析

张丹志 尹强 徐文静 方勇 焦郑同 马诗淳 刘祚军 章力干

引用本文: 张丹志, 尹强, 徐文静, 方勇, 焦郑同, 马诗淳, 刘祚军, 章力干. 猪粪厌氧发酵的有机酸代谢与微生物群落相关性分析[J]. 分析化学, 2022, 50(8): 1260-1268. doi: 10.19756/j.issn.0253-3820.221225 shu
Citation:  ZHANG Dan-Zhi,  YIN Qiang,  XU Wen-Jing,  FANG Yong,  JIAO Zheng-Tong,  MA Shi-Chun,  LIU Zuo-Jun,  ZHANG Li-Gan. Relationship Between Organic Acid Metabolites and Microbial Communities During Anaerobic Digestion of Pig Manure[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1260-1268. doi: 10.19756/j.issn.0253-3820.221225 shu

猪粪厌氧发酵的有机酸代谢与微生物群落相关性分析

    通讯作者: 刘祚军,E-mail:zhangligan1965@163.com; 章力干,E-mail:liuzj1029@163.com
  • 基金项目:

    安徽省农业科学院创新团队项目(No.2022YL036)和农业农村部农村可再生能源开发利用重点实验室开放课题项目(No.2019011)资助。 # 共同第一作者

摘要: 有机酸代谢和微生物菌群结构稳定性是维持厌氧消化系统高效运行的关键。为研究该理化物质代谢与微生物群落变化之间的关系,本研究以猪粪发酵体系为例,设置3个搅拌梯度(0、80和200 r/min),分别代表无搅拌、适度搅拌和过度搅拌条件,监测猪粪厌氧发酵过程中挥发性脂肪酸等理化性质的变化,再结合高通量测序技术,进一步分析微生物种群多样性变化。结果表明,发酵体系以厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)和广古菌门(Euryarchaeota)为优势菌。适度搅拌可在一定程度上促进微生物分解有机质的效率,形成稳定高效的微生物群落,其中,总固体、挥发性固体和化学需氧量去除率分别达到79.15%、63.63%和87.89%。有机质分解代谢产物以乙酸和丙酸为主,其浓度与拟杆菌门(Bacteroidetes)丰度呈正相关性,与变形菌门(Proteobacteria)呈负相关性。过度搅拌使产氢产乙酸菌(如互养菌门(Synergistetes))丰度增加,引起耗氢产乙酸菌酸杆菌门(Acidobacteria)丰度随之增加,导致乙酸和丙酸浓度分别提高21.09%和6.44%,氢营养型产甲烷菌甲烷粒菌属(Methanocorpusculum)丰度随之增加31.95%,但甲烷产量反而下降,说明过度搅拌显著提高了乙酸和丙酸浓度,促进产甲烷途径由乙酸裂解型向低效的乙酸氧化产甲烷转化。本研究结果对于理解猪粪厌氧消化过程的有机酸代谢与产甲烷途径的调控具有重要的参考意义。

English


    1. [1]

      KUNATSA T, XIA X. Bioresour. Technol., 2022, 344(Pt B):126311.KUNATSA T, XIA X. Bioresour. Technol., 2022, 344(Pt B):126311.

    2. [2]

      CAZAUDEHORE G, GUYONEAUD R, EVON P, MARTIN-CLOSAS L, PELACHO A M, RAYNAUD C, MONLAU F. Biotechnol. Adv., 2022, 56:107916.CAZAUDEHORE G, GUYONEAUD R, EVON P, MARTIN-CLOSAS L, PELACHO A M, RAYNAUD C, MONLAU F. Biotechnol. Adv., 2022, 56:107916.

    3. [3]

      MA S J, MA H J, HU H D, REN H Q. Water Res., 2019, 148:359-367.MA S J, MA H J, HU H D, REN H Q. Water Res., 2019, 148:359-367.

    4. [4]

      TONANZI B, BRAGUGLIA C M, GALLIPOLI A, MONTECCHIO D, PAGLIACCIA P, ROSSETTI S, GIANICO A. New Biotechnol., 2020, 55:108-117.TONANZI B, BRAGUGLIA C M, GALLIPOLI A, MONTECCHIO D, PAGLIACCIA P, ROSSETTI S, GIANICO A. New Biotechnol., 2020, 55:108-117.

    5. [5]

      YANG Xing-Sheng, WANG Shang, HE Qing, WANG Zhu-Jun, ZHANG Zhao-Jing, JIANG Cheng-Ying, MA Li-Ping, LIU Xian-Wei, HU Bao-Lan, LI Yong-Mei, DENG Ye. Chin. J. Biotechnol., 2021, 37(10):3425-3438.杨兴盛,王尚,何晴,王朱珺,张照婧,姜成英,马黎萍,刘贤伟,胡宝兰,李咏梅,邓晔.生物工程学报, 2021, 37(10):3425-3438.

    6. [6]

      WANG Y, XU J, CUI D, KONG L, CHEN S, XIE W, ZHANG C. Anal. Chem., 2021, 93(51):17012-17019.WANG Y, XU J, CUI D, KONG L, CHEN S, XIE W, ZHANG C. Anal. Chem., 2021, 93(51):17012-17019.

    7. [7]

      HAN Y, GREEN H, TAO W. Chemosphere., 2020, 255:126840.HAN Y, GREEN H, TAO W. Chemosphere., 2020, 255:126840.

    8. [8]

      CJ/T3039-1995. Sampling and Physical Analysis Methods for Municipal Domestic Refuse. Industrial Standards for Urban Construction of the People's Republic of China.城市生活垃圾采样和物理分析方法.中华人民共和国城镇建设行业标准. CJ/T3039-1995.

    9. [9]

      CJ/T 96-1999. Municipal Domestic Refuse-Determination of Organic Matter-Ignition Method. Industrial Standards for Urban Construction of the People's Republic of China.城市生活垃圾有机质的测定灼烧法.中华人民共和国城镇建设行业标准. CJ/T 96-1999.

    10. [10]

      HJ 828-2017. Water Quality-Determination of the Chemical Oxygen Demand-Dichromate Method. National Environmental Protection Standards of the People's Republic of China.水质-化学需氧量的测定-重铬酸盐法.中华人民共和国国家环境保护标准. HJ 828-2017.

    11. [11]

      HJ 535-2009. Water Quality-Determination of Ammonia Nitrogen-Nessler's Reagent Spectrophotometry. National Environmental Protection Standards of the People's Republic of China.水质-氨氮的测定-纳氏试剂分光光度法.中华人民共和国国家环境保护标准. HJ 535-2009.

    12. [12]

      HOSSAIN M S, KARIM T U, ONIK M H, KUMAR D, RAHMAN M A, YOUSUF A, UDDIN M R. Sci. Rep., 2022, 12(1):6162.HOSSAIN M S, KARIM T U, ONIK M H, KUMAR D, RAHMAN M A, YOUSUF A, UDDIN M R. Sci. Rep., 2022, 12(1):6162.

    13. [13]

      LIU Ye, ZHAO Li-Xin, SHEN Yu-Jun, MENG Hai-Bo. China Biogas, 2018, 36(1):65-70.刘烨,赵立欣,沈玉君,孟海波.中国沼气, 2018, 36(1):65-70.

    14. [14]

      LI Y L, WANG J, YUE Z B, TAO W, YANG H B, ZHOU Y F, CHEN T H. J. Biosci. Bioeng., 2017, 124(1):71-75.LI Y L, WANG J, YUE Z B, TAO W, YANG H B, ZHOU Y F, CHEN T H. J. Biosci. Bioeng., 2017, 124(1):71-75.

    15. [15]

      KRAKAT N, DEMIREL B, ANJUM R, DIETZ D. Water Sci. Technol., 2017, 76(7-8):1925-1938.KRAKAT N, DEMIREL B, ANJUM R, DIETZ D. Water Sci. Technol., 2017, 76(7-8):1925-1938.

    16. [16]

      ZHANG N, PENG H, LI Y, YANG W, ZOU Y, DUAN H. Braz. J. Microbiol., 2018, 49(4):770-776.ZHANG N, PENG H, LI Y, YANG W, ZOU Y, DUAN H. Braz. J. Microbiol., 2018, 49(4):770-776.

    17. [17]

      AGNIHOTRI S, YIN D M, MAHBOUBI A, SAPMAZ T, VARJANI S, QIAO W, KOSEOGLU-IMER D Y, TAHERZADEH M J. Bioengineered, 2022, 13(1):1249-1275.AGNIHOTRI S, YIN D M, MAHBOUBI A, SAPMAZ T, VARJANI S, QIAO W, KOSEOGLU-IMER D Y, TAHERZADEH M J. Bioengineered, 2022, 13(1):1249-1275.

    18. [18]

      LI X, XIAO X, LIU Y, FANG G, WANG P, ZOU D. J. Environ. Manage., 2022, 305:114408.LI X, XIAO X, LIU Y, FANG G, WANG P, ZOU D. J. Environ. Manage., 2022, 305:114408.

    19. [19]

      LIU Chen-Ming, CAO Hong-Bin, CAO Jun-Ya, LI Yu-Ping, ZHANG Yi. Chin. J. Anal. Chem., 2006, 34(9):1231-1234.刘晨明,曹宏斌,曹俊雅,李玉平,张懿.分析化学, 2006, 34(9):1231-1234.

    20. [20]

      DARKO E, THURBIDE K B. Anal. Chim. Acta, 2020, 1106:216-223.DARKO E, THURBIDE K B. Anal. Chim. Acta, 2020, 1106:216-223.

    21. [21]

      TATARA M, MAKIUCHI T, UENO Y, GOTO M, SODE K. Bioresour. Technol., 2008, 99(11):4786-4795.TATARA M, MAKIUCHI T, UENO Y, GOTO M, SODE K. Bioresour. Technol., 2008, 99(11):4786-4795.

    22. [22]

      HAN R, LIU L, MENG Y, HAN H, XIONG R, LI Y, CHEN L. Biotechnol. Lett., 2021, 43(7):1337-1348.HAN R, LIU L, MENG Y, HAN H, XIONG R, LI Y, CHEN L. Biotechnol. Lett., 2021, 43(7):1337-1348.

    23. [23]

      JIN X, AI W, DONG W. Life Sci. Space Res., 2022, 32:1-7.JIN X, AI W, DONG W. Life Sci. Space Res., 2022, 32:1-7.

    24. [24]

      PARK J, CAYETANO R D A, KIM G B, JO Y, KWON Y, LEI Z, KIM S H. Bioresour. Technol., 2022, 346:126594.PARK J, CAYETANO R D A, KIM G B, JO Y, KWON Y, LEI Z, KIM S H. Bioresour. Technol., 2022, 346:126594.

    25. [25]

      LIU L, XIONG R, LI Y, CHEN L, HAN R. Arch. Microbiol., 2022, 204(3):188.LIU L, XIONG R, LI Y, CHEN L, HAN R. Arch. Microbiol., 2022, 204(3):188.

    26. [26]

      FINCKER M, HUBER J A, ORPHAN V J, RAPPEM S, TESKE A, SPORMANN A M. Environ. Microbiol., 2020, 22(8):3188-3204.FINCKER M, HUBER J A, ORPHAN V J, RAPPEM S, TESKE A, SPORMANN A M. Environ. Microbiol., 2020, 22(8):3188-3204.

    27. [27]

      PAMPILLON-GONZALEZ L, ORTIZ-CORNEJO N L, LUNA-GUIDO M, DENDOOVEN L, NAVARRO-NOYA Y E. J. Mol. Microbiol. Biotechnol., 2017, 27(5):306-317.PAMPILLON-GONZALEZ L, ORTIZ-CORNEJO N L, LUNA-GUIDO M, DENDOOVEN L, NAVARRO-NOYA Y E. J. Mol. Microbiol. Biotechnol., 2017, 27(5):306-317.

    28. [28]

      JOSHI A, LANJEKAR V, DHAKEPHALKAR P K, DAGAR S S. Anaerobe, 2018, 50:64-68.JOSHI A, LANJEKAR V, DHAKEPHALKAR P K, DAGAR S S. Anaerobe, 2018, 50:64-68.

    29. [29]

      ZHAO Dan, REN Nan-Qi, WANG Ai-Jie. Chongqing Environ. Sci., 2003, 25(2):33-35, 38-61.赵丹,任南琪,王爱杰.重庆环境科学, 2003, 25(2):33-35, 38-61.

  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  908
  • HTML全文浏览量:  197
文章相关
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-05-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章