Citation: Chen Zili, Li Peixia, Liu Weitong, Zhuang Zhe, Wu Yuanyuan, Zhao Hanqing, Zhang Jianjun. High Efficiency Synthesis of the Tetrasccharide Repeating Unit in Azospirillum brasilense Strains Sp246 Based on Silica Gel Supported Perchloric Acid (HClO4-SiO2)[J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1716-1724. doi: 10.6023/cjoc201911025
基于硅胶负载高氯酸(HClO4-SiO2)的固氮螺菌四糖重复单元的高效合成
-
关键词:
- 鼠李糖
- / 硅胶负载高氯酸(HClO4-SiO2)
- / 固氮螺菌
- / 寡糖合成
English
High Efficiency Synthesis of the Tetrasccharide Repeating Unit in Azospirillum brasilense Strains Sp246 Based on Silica Gel Supported Perchloric Acid (HClO4-SiO2)
-
糖类化合物是构成生命体的最基本物质之一, 它以糖和糖缀合物的形式广泛存在于自然界中, 在分子识别、物质运转、新陈代谢、信息传递和免疫等生物过程中起着重要的作用.研究发现, 许多糖类化合物具有抗菌、抗病毒和抗肿瘤等[1]医药活性, 同时在农业领域, 还具有杀虫[2]、杀菌[3]、调节植物生长[4]和激活植物免疫系统[5]等农药活性.关于糖类化合物的研究引起了科学家们越来越多的重视.然而, 通过天然产物提取的方式很难在数量和纯度上满足科学研究的要求, 而且由于糖类化合物结构的特殊性和复杂性, 其合成工作难度较大, 因此, 寡糖的合成方法学研究一直是科学家研究的热点[6].通过对具有生理活性的寡糖进行合成方法学研究, 不仅能确证其功能性, 还能为进一步化学修饰、结构改造、机理研究和生物活性研究创造条件[7].
目前寡糖的合成主要集中在糖苷化反应条件以及羟基保护基的选择上, 从最初的Fisher糖苷化[8]到Schmidt试剂偶联反应[9], 随着多种糖苷化偶联条件和各种选择性保护基团的发现, 糖化学进入快速发展时期[10].随着寡糖合成方法学的不断发展, 硅胶负载酸作为固体酸催化剂被应用于糖化学反应中, HClO4-SiO2是优秀代表, 它具有性质稳定、无腐蚀性、低毒、可回收和后处理简单等优异特性[11].
植物病原菌脂多糖(Lipopolysaccharide, LPS)是革兰氏阴性菌细胞壁最外层的重要组成成分, 参与病原菌与寄主间发生的一切生理过程[12], 其基本结构是由核心寡糖(Core Oligosaccharide, CO)、糖酯(Lipid A, LA)及O-多糖(O-Polysaccharide, OPS)三部分组成.其中OPS是由1~4个寡糖结构重复单元构成的多糖.研究发现, 它在细胞识别、信号传递和病原菌黏附过程中起关键作用, 并且对寄主具有免疫激活活性[13].此外, 果树及豆科植物根瘤菌的寡糖结构还有利于豆科植物的生物固氮性能[14].由于通过天然产物提取并分离纯化的寡糖是聚合物, 不利于进行深入研究, 因此, 针对OPS寡糖结构的合成工作一直吸引着科学家们的关注[15]. 2014年, Sigida等[16]报道了Sp246型固氮螺菌(Azospirillum brasilense type strain Sp246)细胞壁脂多糖中的O-多糖OPS结构是由L-鼠李糖和D-葡萄糖所构成的四糖重复单元(1).我们采用HClO4-SiO2作为固体酸催化剂, 首次高效完成四糖重复单元, 即α-L-鼠李糖-(1→3)-α-L-鼠李糖- (1→3)-[β-D-葡萄糖-(1→4)]-α-L-鼠李糖对甲氧基苯基苷的合成工作(Scheme 1).
图式 1
图式 1. 巴西固氮螺菌Sp246型菌株中LPS四糖结构重复单元Scheme 1. Tetrasaccharide repeating unit of LPS (1) from Azospirillum brasilense strains Sp2461. 结果与讨论
寡糖的合成需要对组分单糖的羟基进行选择性保护与脱保护, 从而让偶联反应在特定位置进行, 保护基团的选择、偶联反应条件的确定及合成策略的高效性和合理性一直是寡糖合成的研究重点和难点.此外, 采用更少更环保的试剂, 同时还能高产率地获得目标化合物, 亦是当前糖合成的重要考虑因素.仔细研究四糖2的结构特点, 其主要是由L-鼠李糖和D-葡萄糖组成, 需要三次偶联反应. Scheme 2为目标化合物的逆合成分析:四糖的合成起始于L-鼠李糖和D-葡萄糖合成子的合成, 随后逐步糖基化和去保护, 最终得到目标化合物.考虑到总产率和成功率, 我们拟采用[2+2]策略, 即双糖供体2, 3, 4-三-O-苯甲酰基-α-L-鼠李糖苷-(1→3)-2, 4-二-O-苯甲酰基-α-L-鼠李糖三氯乙酰亚胺酯(3)和双糖受体2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)-2-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(4)偶联制备四糖基本骨架, 然后脱掉保护基团获得最终四糖2.而双糖供体和受体的构建, 是由最关键的合成单元2, 3, 4-三-O-苯甲酰基-α-L-鼠李糖三氯乙酰亚胺酯(5)、2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖三氯乙酰亚胺酯(6)、2, 3-O-异丙叉基-α-L-鼠李糖对甲氧基苯基苷(7)和2, 4-二-O-苯甲酰基- α-L-鼠李糖对甲氧基苯基苷(8)[17]来偶联完成.
图式 2
合成子5和6根据已报道方法, 分别由L-鼠李糖和D-葡萄糖为原料, 经全苯甲酰化、选择性脱除异头碳保护基团和三氯乙酰亚胺酯化获得, 中间过程只需一步重结晶, 无需柱层析纯化.合成子7的制备依然选择L-鼠李糖为起始原料, 根据已报道方法, 经四步反应制得.合成子9[20]的获得是以合成子7为原料, 在吡啶和苯甲酰氯作用下C-4位羟基苯甲酰化, 后在硅胶负载高氯酸(HClO4-SiO2)体系作用下解2, 3-异丙叉基, 以两步85%的总产率获得化合物9 (Scheme 3).起初我们考虑利用本课题组已有研究基础, 采用烯丙氧羰基(Alloc)对C-3位羟基选择性保护.考虑到后续保护基团的脱除问题, 最后采用三乙基氯硅烷(TESCl)在无水二氯甲烷作溶剂条件下, 对C-3位羟基选择性保护, 以90%产率获得化合物10.化合物10在吡啶和苯甲酰氯作用下C-2位羟基苯甲酰化得到化合物11, 产率97%.用无水二氯甲烷作溶剂, 硅胶负载高氯酸(HClO4-SiO2)体系作用下, 合成子8[15]由化合物11以93%产率制备.
图式 3
图式 3. α-L-鼠李糖供体5、受体7和8的合成Scheme 3. Synthesis of α-L-rhamnose donor 5, receptors 7 and 8Reagents and conditions: (a) BzCl, pyridine, 0 ℃ to r.t., 2 h; then MeCN, HClO4-SiO2, 3 h, 50 ℃, 85% for two steps; (b) TESCl, imidazole, CH2Cl2, N2, -10 ℃ to r.t., 2 h, 90%; (c) BzCl, pyridine, 0 ℃ to r.t., 2 h, 97%; (d) HClO4-SiO2, CH2Cl2, 3 h, 92%.
在获得关键合成子之后, 我们采用硅胶负载高氯酸(HClO4-SiO2)体系作为催化剂, 用糖苷供体5[15]和受体8[15]进行偶联, 以92%产率得到双糖12, 在硝酸铈铵(CAN)的作用下脱去对甲氧基苯基保护基团, 再与三氯乙腈在1, 8-二氮杂二环十一碳-7-烯(DBU)[9]的催化下得到双糖施密特试剂3, 产率83%.同时, 供体6和受体7在无水二氯甲烷溶剂存在下, 用硅胶负载高氯酸(HCl- O4-SiO2)体系催化发生缩合反应, 得到1→4连接的双糖13, 产率91%. 13用乙腈溶解, 在硅胶负载高氯酸(HClO4-SiO2)体系和加热条件下, 解开异丙叉基得到双糖14 (93%), 14和咪唑在无水二氯甲烷溶剂中, 低温下用三乙基氯硅烷(TESCl)选择性保护C-3位羟基得到双糖15 (92%).然后在吡啶作为缚酸剂和溶剂条件下, 苯甲酰化得到16 (95%), 再经硅胶负载高氯酸(HClO4-SiO2)体系作用脱除三乙基硅基, 以91%产率得到双糖受体4 (Scheme 4).
图 4
图 4. 四糖的合成Figure 4. Synthesis of tetrasaccharideReagents and conditions: (a) HClO4-SiO2, N2, CH2Cl2, 1.5 h, 92%; (b) (i) (NH4)2Ce(NO3)6, MeCN/H2O (V:V=4:1), r.t., 0.5 h; (ii) CCl3CN, DBU, N2, CH2Cl2, 2 h, r.t., 83% for two steps; (c) HClO4-SiO2, N2, CH2Cl2, 1.5 h, 91%; (d) MeCN, HClO4-SiO2, 3 h, 50 ℃, 93%; (e) TESCl, imidazole, CH2Cl2, N2, -10 ℃ to r.t., 2 h, 92%; (f) BzCl, pyridine, 0 ℃ to r.t., 2 h, 95%; (g) HClO4-SiO2, CH2Cl2, 3 h, 91%; (h) HClO4-SiO2, N2, CH2Cl2, 1.5 h, 88%; (i) MeONH4, MeOH, 7 d, 95%
最后, 以无水二氯甲烷为溶剂, 硅胶负载高氯酸(HClO4-SiO2)体系催化供体3和受体4发生缩合反应, 得到的四糖17在甲醇氨条件下脱保护得到四糖2 (Scheme 4).其结构经1H NMR, 13C NMR和HSQC确证(图 1). 1H NMR显示在化学位移δ 5.24, 4.95, 4.94处有三个鼠李糖的H-1的特征峰, 一个葡萄糖的H-1的特征峰[δ 4.52 (J1, 2=7.9 Hz)]. 13C NMR在δ 98.9,102.5,102.8,103.0处有四个C-1的特征峰.在全合成过程中, 主要采用硅胶负载高氯酸(HClO4-SiO2)作为酸性催化剂, 三乙基硅基作为选择性保护基, 简单高效地构建全保护的四糖.该合成路线步骤短, 试剂种类少, 后处理简单, 以L-鼠李糖为原料计算, 四糖2总收率达23%.
图 1
3. 实验部分
3.1 仪器与试剂
质谱采用Bruker Daltonics Bio-TOF-Q Ⅲ型质谱仪(ESIMS)测定; 核磁共振波谱使用Bruker Avance 400 MHz型核磁共振仪测定, 四甲基硅烷(TMS)为内标物.所有试剂为国产市售分析纯, 无水溶剂按标准方法处理.硅胶负载高氯酸(HClO4-SiO2)体系配制:称取1.8 g HClO4加入到23.7 g硅胶(300~400目)的70 mL乙醚悬浮液中, 减压条件下浓缩, 100 ℃下真空干燥3 h, 即得硅胶负载高氯酸(HClO4-SiO2)体系(0.5 mmol/g).
3.2 实验方法
3.2.1 4-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(9)的合成
参考文献[20]方法, 将2, 3-O-异丙叉基-α-L-鼠李糖对甲氧基苯基苷(7) (2.0 g, 6.44 mmol)溶于10 mL吡啶中, 0 ℃条件下, 滴加苯甲酰氯(0.89 mL, 7.7 mmol), 滴完后移至室温下反应2 h.薄层色谱(TLC)检测反应完全后, 减压条件下浓缩, 加入甲苯复蒸两次, 蒸除吡啶, 粗产物用30 mL乙腈溶解, 加入硅胶负载高氯酸(HClO4-SiO2)体系(1.3 g, 0.64 mmol), 50 ℃下反应3 h.薄层色谱(TLC)检测反应完全后, 加入1.0 g碳酸氢钠中和, 铺硅藻土层抽滤, 滤液浓缩, 柱层析分离[V(石油醚):V(乙酸乙酯)=2:1]得到无色油状液体4-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(9), 两步总产率2.05 g, 产率85%. Anal. calcd for C20H22O7: C 64.16, H 5.92; found C 64.25, H 5.80.
3.2.2 4-O-苯甲酰基-3-O-三乙基硅基-α-L-鼠李糖对甲氧基苯基苷(10)的合成
将4-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(9) (2 g, 5.35 mmol)和咪唑(1.1 g, 16.03 mmol)溶解在50 mL无水二氯甲烷中, 冰浴冷却至-10 ℃, 氮气保护下30 min内滴加三乙基氯硅烷(TESCl) (0.92 mL, 5.45 mmol)的二氯甲烷溶液(10 mL), 撤去冰浴使反应物自然升温到室温, 2 h后, TLC检测反应完全后, 加入0.5 mL甲醇终止反应, 转移至分液漏斗中, 用饱和食盐水(50 mL×2)洗涤, 用二氯甲烷(50 mL×2)萃取, 合并有机相, 无水硫酸钠干燥.过滤, 滤液减压浓缩, 浓缩物用柱层析分离[V(石油醚):V(乙酸乙酯)=5:1]得到2.4 g无色透明液体4-O-苯甲酰基-3-O-三乙基硅基-α-L-鼠李糖对甲氧基苯基苷(10), 产率90%.
$[\alpha ]_{\text{D}}^{25}$ -40.0 (c 0.1, CHCl3); 1H NMR (CDCl3, 400 MHz) δ: 0.57 (q, J=7.5 Hz, 6H, CH2×3), 0.86 (t, J=7.9 Hz, 9H, CH3×3), 1.20 (d, J=6.3 Hz, 3H, H-6), 3.78 (s, 3H, OCH3), 3.99~4.10 (m, 2H, H-2, H-5), 4.33 (dd, J=9.3, 3.5 Hz, 1H, H-3), 5.32 (dd, J=20.0, 10.4 Hz, 1H, H-4), 5.51 (d, J=1.7 Hz, 1H, H-1), 6.75~7.15 (m, 4H, ArH), 7.45~8.12 (m, 5H, ArH); 13C NMR (101 MHz, CDCl3) δ: 4.9, 6.7, 17.6, 55.8, 67.0, 70.6, 71.9, 74.3, 98.2 (C-1), 114.8,117.8,128.5,129.8,130.1,133.2,150.5,155.1,165.8; IR (KBr) ν: 3502.4 (O—H), 1703.2 (C=O), 1598.9, 1510.1 (C—C aromatic), 1273.2, 1120.1, 1071.8, 1028.3 (C—O—C) cm-1. Anal. calcd for C26H36O7Si: C 63.91, H 7.43; found C 63.80, H 7.34.3.2.3 2, 4-二-O-苯甲酰基-3-O-三乙基硅基-α-L-鼠李糖对甲氧基苯基苷(11)的合成
将4-O-苯甲酰基-3-O-三乙基硅基-α-L-鼠李糖对甲氧基苯基苷(10) (2.0, g 4.1 mmol)溶于10 mL吡啶中, 0 ℃下加入苯甲酰氯(0.71 mL, 6.1 mmol), 然后移至室温下反应2 h. TLC检测反应完全后, 减压条件下浓缩, 粗产物用柱层析分离[V(石油醚):V(乙酸乙酯)=5:1]得到2.35 g无色油状液体2, 4-二-O-苯甲酰基-3-O-三乙基硅基-α-L-鼠李糖对甲氧基苯基苷(11), 产率97%.
$[\alpha ]_{\text{D}}^{25}$ -2.1 (c 0.1, CHCl3); 1H NMR (CDCl3, 400 MHz) δ: 0.46~0.58 (m, 6H, CH2×3), 0.80 (t, J=7.9 Hz, 9H, CH3×3), 1.30 (d, J=6.2 Hz, 3H, H-6), 3.74 (s, 3H, OCH3), 4.18 (dd, J=10.0, 6.1 Hz, 1H, H-5), 4.61 (dd, J=9.6, 3.3 Hz, 1H, H-3), 5.52~5.56 (m, 3H, H-1, H-2, H-4), 6.81~7.13 (m, 4H, ArH), 7.35~8.27 (m, 10H, ArH); 13C NMR (101 MHz, CDCl3) δ: 4.8, 6.6, 17.7, 55.5, 67.5, 68.7, 73.2, 74.7, 97.1 (C-1), 114.7,117.9,128.4,128.5,129.7,129.8,130.0,130.1,133.1,133.2,150.3,155.3,165.6,166.1; IR (KBr) ν: 1727.9 (C=O), 1507.3 (C—C aromatic), 1265.0, 1133.2, 1107.2, 1070.4 (C—O—C) cm-1. Anal. calcd for C33H40O8Si: C 66.87, H 6.80; found C 66.92, H 6.67.3.2.4 2, 4-二-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(8)的合成
2, 4-二-O-苯甲酰基-3-O-三乙基硅基-α-L-鼠李糖对甲氧基苯基苷(11) (2 g, 3.37 mmol)用50 mL二氯甲烷溶解, 加入硅胶负载高氯酸(HClO4-SiO2)体系(0.7 g, 0.34 mmol), 室温下反应3 h. TLC检测反应完全, 加入0.5 g碳酸氢钠中和, 铺硅藻土层抽滤, 滤液浓缩, 用柱层析分离[V(石油醚):V(乙酸乙酯)=4:1]得到1.5 g白色泡沫状固体2, 4-二-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(8), 产率93%. m.p. 89.1~90.5 ℃; 1H NMR (CDCl3, 400 MHz) δ: 1.32 (d, J=6.2 Hz, 3H, H-6), 3.79 (s, 3H, OCH3), 4.23 (dd, J=9.6, 6.2 Hz, 1H, H-5), 4.53 (dd, J=9.9, 3.2 Hz, 1H, H-3), 5.35 (t, J=9.8 Hz, 1H, H-4), 5.57~5.59 (m, 2H, H-1, H-2), 6.84~7.07 (m, 4H, ArH), 7.44~8.15 (m, 10H, ArH). Anal. calcd for C33H40O8Si: C 66.87, H 6.80; found C 66.72, H 6.60.
3.2.5 2, 3, 4-三-O-苯甲酰基-α-L-鼠李糖苷-(1→3)- 2, 4-二-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(12)的合成
将2, 4-二-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(8) (2.8 g, 5.85 mmol)、2, 3, 4-三-O-苯甲酰基-α-L-鼠李糖三氯乙酰亚胺酯(5) (4.0 g, 6.44 mmol)和4 Å分子筛(3.0 g)溶于40 mL无水二氯甲烷中, 氮气保护下搅拌0.5 h, 加入硅胶负载高氯酸(HClO4-SiO2)体系(1.2 g, 0.6 mmol), 室温下继续反应1 h, TLC检测反应完全, 铺硅藻土层抽滤, 二氯甲烷洗涤, 滤液依次用饱和NaHCO3水溶液(20 mL×2)和饱和食盐水(20 mL×2)洗涤, 有机相干燥, 过滤, 滤液浓缩, 粗产物用柱层析分离[V(石油醚):V(乙酸乙酯)=5:1]得5.04 g白色泡沫状固体双糖2, 3, 4-三-O-苯甲酰基-α-L-鼠李糖苷-(1→3)-2, 4-二-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(12), 产率92%.
$[\alpha ]_{\text{D}}^{25}$ +44.8 (c 0.1, CHCl3); m.p. 79.5~80.3 ℃; 1H NMR (CDCl3, 400 MHz) δ: 1.18 (d, J=6.2 Hz, 3H, H-6), 1.35 (d, J=6.2 Hz, 3H, H-6'), 3.78 (s, 3H, OCH3), 4.17~4.23 (m, 2H), 4.70 (dd, J=9.7, 3.4 Hz, 1H), 5.31~5.33 (m, 2H), 5.52 (t, J=9.9 Hz, 1H), 5.60~5.74 (m, 4H), 6.74~7.11 (m, 4H, ArH), 7.13~8.32 (m, 25H, ArH); 13C NMR (101 MHz, CDCl3) δ: 17.6, 17.9, 55.8, 67.7, 67.7, 69.5, 70.9, 71.7, 72.4, 73.2, 76.4, 96.6 (C-1), 99.6 (C-1), 114.9,117.9,128.2,128.4,128.4,128.5,128.6,128.9,129.2,129.4,129.5,129.6,129.7,129.7,129.8,129.9,130.1,130.2,132.9,133.3,133.3,133.4,133.7,150.3,155.4,164.9,165.2,165.7,165.9,166.3; IR (KBr) ν: 1731.6 (C=O), 1601.8, 1507.5 (C—C aromatic), 1263.8, 1177.3, 1106.5, 1027.8 (C—O—C) cm-1. Anal. calcd for C54H48O15: C 69.22, H 5.16; found C 69.03, H 5.30.3.2.6 2, 3, 4-三-O-苯甲酰基-α-L-鼠李糖苷-(1→3)- 2, 4-二-O-苯甲酰基-α-L-鼠李糖三氯乙酰亚胺酯(3)的合成
将双糖2, 3, 4-三-O-苯甲酰基-α-L-鼠李糖苷-(1→3)- 2, 4-二-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(12) (1.5 g, 1.6 mmol)溶解于30 mL 0.015 mol/L的乙腈水溶液中, 30 ℃下加入硝酸铈铵(CAN) (3.7 g, 6.4 mmol), 此温度条件下继续反应20 min. TLC检测反应完全后, 将反应液在低于50 ℃下减压浓缩, 二氯甲烷溶解浓缩物, 用水(40 mL×2)洗涤分液后, 有机相用无水Na2SO4干燥, 过滤浓缩, 柱层析分离[V(石油醚):V(乙酸乙酯)=3:1]得到1.2 g白色泡沫状的脱对甲氧基苯基保护的双糖, 将此双糖溶解在40 mL无水二氯甲烷中, 氮气保护下加入三氯乙腈(0.5 mL, 4.8 mmol)和1, 8-二氮杂二环十一碳-7-烯(DBU) (0.06 mL, 0.4 mmol), 于室温下搅拌反应2 h, TLC检测反应完全.将反应液减压浓缩, 浓缩物经柱层析分离[V(石油醚):V(乙酸乙酯)=3:1)得到1.3 g白色泡沫状固体2, 3, 4-三-O-苯甲酰基-α-L-鼠李糖苷- (1→3)-2, 4-二-O-苯甲酰基-α-L-鼠李糖三氯乙酰亚胺酯(3), 两步总产率83%. m.p. 93.7~94.5 ℃;
$[\alpha ]_{\text{D}}^{25}$ +25.8 (c 0.1, CHCl3); 1H NMR (CDCl3, 400 MHz) δ: 1.19 (d, J=6.2 Hz, 3H, H-6), 1.41 (d, J=6.2 Hz, 3H, H-6'), 4.20~4.30 (m, 2H), 4.59 (dd, J=9.8, 3.4 Hz, 1H), 5.25 (d, J=1.7 Hz, 1H, H-1'), 5.33 (dd, J=3.3, 1.7 Hz, 1H), 5.52 (t, J=9.8 Hz, 1H), 5.61 (dd, J=10.1, 3.3 Hz, 1H), 5.66~5.75 (m, 2H), 6.51 (d, J=1.9 Hz, 1H, H-1), 7.15~8.31 (m, 25H, ArH), 8.82 (s, 1H, C=NH). Anal. calcd for C49H42Cl3NO14: C 60.35, H 4.34, N 1.44; found C 60.23, H 4.22, N 1.31.3.2.7 2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)- 2, 3-O-异丙叉基-α-L-鼠李糖对甲氧基苯基苷(13)的合成
将2, 3-O-异丙叉基-α-L-鼠李糖对甲氧基苯基苷(7) (1.0 g, 3.2 mmol)、2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖三氯乙酰亚胺酯(6) (2.9 g, 3.8 mmol)和4 Å分子筛(2.0 g)溶于40 mL无水二氯甲烷中, 氮气保护下搅拌0.5 h, 加入硅胶负载高氯酸(HClO4-SiO2)体系(0.6 g, 0.3 mmol), 室温下继续反应1 h, TLC检测反应完全, 铺硅藻土层抽滤, 二氯甲烷洗涤, 滤液依次用饱和NaHCO3水溶液(20 mL×2)和饱和食盐水(20 mL×2)洗涤, 有机相干燥, 过滤, 滤液浓缩, 粗产物用柱层析分离[V(石油醚):V(乙酸乙酯)=4:1]得2.6 g白色泡沫状固体2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)-2, 3-O-异丙叉基-α-L-鼠李糖对甲氧基苯基苷(13), 产率91%.
$[\alpha ]_{\text{D}}^{25}$ -15.3 (c 0.1, CHCl3); m.p. 120.8~121.5 ℃; 1H NMR (CDCl3, 400 MHz) δ: 1.22 (d, J=6.1 Hz, 3H, H-6''), 1.31 (s, 3H, CCH3), 1.52 (s, 3H, CCH3), 3.54~3.88 (m, 5H), 4.12~4.21 (m, 3H), 4.50 (dd, J=12.1, 5.5 Hz, 1H), 4.67 (dd, J=12.2, 3.1 Hz, 1H), 5.37 (d, J=8.0 Hz, 1H), 5.44~5.57 (m, 2H), 5.66 (t, J=9.7 Hz, 1H), 5.95 (t, J=9.6 Hz, 1H), 6.80~8.06 (m, 24H, ArH); 13C NMR (101 MHz, CDCl3) δ: 17.5, 26.2, 27.9, 55.6, 63.2, 64.8, 70.0, 72.2, 72.3, 73.2, 75.9, 77.3, 77.9, 80.7, 96.2 (C-1), 100.5 (C-1), 109.5,114.6,117.9,128.3,128.4,128.4,128.8,128.9,129.5,129.5,129.7,129.8,129.8,129.9,133.2,133.2,133.3,133.5,150.1,155.0,163.7,165.3,165.9,166.1; IR (KBr) ν: 1726.6, 1697.5 (C=O), 1604.8, 1512.3 (C—C aromatic), 1267.0, 1109.7, 1068.7, 1038.1 (C—O—C) cm-1. Anal. calcd for C50H48O15: C 67.56, H 5.44; found C 67.68, H 5.56.3.2.8 2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)- α-L-鼠李糖对甲氧基苯基苷(14)的合成
2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)- 2, 3-O-异丙叉基-α-L-鼠李糖对甲氧基苯基苷(13) (1.0 g, 1.1 mmol)用30 mL乙腈溶解, 加入硅胶负载高氯酸(HClO4-SiO2)体系(0.2 g, 0.1 mmol), 50 ℃下, 反应3 h. TLC检测反应完全后, 加入0.5 g碳酸氢钠中和, 铺硅藻土层抽滤, 滤液浓缩, 柱层析分离[V(石油醚):V(乙酸乙酯)=2:1]得到0.87 g白色泡沫状固体2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)-α-L-鼠李糖对甲氧基苯基苷(14), 产率93%.
$[\alpha ]_{\text{D}}^{25}$ -24.4 (c 0.1, CHCl3); m.p. 84.9~85.8 ℃; 1H NMR (CDCl3, 400 MHz) δ: 1.23 (d, J=6.1 Hz, 3H), 3.70 (t, J=9.2 Hz, 1H), 3.75 (s, 3H), 3.83 (dd, J=9.7, 6.1 Hz, 1H), 3.96~4.00 (m, 2H), 4.05~4.25 (m, 2H), 4.47 (dd, J=12.2, 5.5 Hz, 1H), 4.70 (dd, J=12.2, 3.0 Hz, 1H), 5.24 (dd, J=7.9, 1.5 Hz, 1H), 5.31 (s, 1H), 5.53 (dd, J=9.8, 7.9 Hz, 1H), 5.66 (t, J=9.7 Hz, 1H), 5.92 (t, J=9.7 Hz, 1H), 6.73~6.83 (m, 2H, ArH), 6.91~6.93 (m, 2H, ArH), 7.26~8.06 (m, 24H, ArH); 13C NMR (101 MHz, CDCl3) δ: 17.7, 55.8, 63.1, 66.9, 69.8, 70.9, 71.2, 72.5, 72.6, 73.1, 77.4, 81.6, 98.4 (C-1), 101.2 (C-1), 114.8,117.8,128.4,128.6,128.7,128.9,128.9,129.2,129.6,129.9,129.9,133.3,133.4,133.6,150.3,155.1,165.3,165.4,165.9,166.2; IR (KBr) ν: 3448.2 (O—H), 1733.7 (C=O), 1601.8, 1507.6 (C—C aromatic), 1267.2, 1093.4, 1069.1, 1026.3 (C—O—C) cm-1. Anal. calcd for C47H44O15: C 66.50, H 5.22; found 66.61, H 5.42.3.2.9 2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)- 3-O-三乙基硅基-α-L-鼠李糖对甲氧基苯基苷(15)的合成
将2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)- α-L-鼠李糖对甲氧基苯基苷(14) (2 g, 2.36 mmol)和咪唑(0.49 g, 7.07 mmol)溶解在50 mL无水二氯甲烷中, 冰浴冷却至-10 ℃, 氮气保护下, 30 min内滴加三乙基氯硅烷(TESCl) (0.4 mL, 2.4 mmol)的二氯甲烷溶液(10 mL), 撤去冰浴使反应物自然升温到室温反应2 h. TLC检测反应完全后, 加入0.5 mL甲醇终止反应, 转移至分液漏斗中, 用二氯甲烷(50 mL×2)萃取, 合并有机相, 再用饱和食盐水(50 mL×2)洗涤, 无水硫酸钠干燥.过滤, 滤液减压浓缩, 浓缩物用柱层析分离[V(石油醚):V(乙酸乙酯)=4:1]得到2.1 g白色泡沫状固体2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)-3-O-三乙基硅基-α-L-鼠李糖对甲氧基苯基苷(15), 产率92%.
$[\alpha ]_{\text{D}}^{25}$ -43.8 (c 0.1, CHCl3); m.p. 85.7~86.5 ℃; 1H NMR (CDCl3, 400 MHz) δ: 0.50~0.64 (m, 6H, CH2×3), 0.86 (t, J=7.9 Hz, 9H, CH3×3), 1.27 (d, J=6.2 Hz, 3H, H-6), 3.75 (s, 3H, OCH3), 3.80~3.95 (m, 3H), 4.07~4.12 (m, 2H), 4.46 (dd, J=12.1, 4.9 Hz, 1H), 4.72 (dd, J=12.1, 3.3 Hz, 1H), 5.23 (d, J=7.8 Hz, 1H, H-1'''), 5.35 (d, J=1.6 Hz, 1H, H-1''), 5.53 (dd, J=9.9, 7.8 Hz, 1H), 5.69 (t, J=9.7 Hz, 1H), 5.88 (t, J=9.7 Hz, 1H), 6.70~6.88 (m, 2H, ArH), 6.88~7.07 (m, 2H, ArH), 7.21~8.06 (m, 20H, ArH); 13C NMR (101 MHz, CDCl3) δ: 5.2, 6.9, 14.3, 17.9, 21.1, 27.0, 55.7, 60.5, 62.9, 67.5, 69.9, 71.9, 72.1, 72.8, 72.9, 73.3, 76.7, 77.4, 98.2,100.3,114.7,117.9,128.4,128.4,128.5,128.5,128.9,128.9,129.5,129.7,129.8,129.8,129.9,130.0,133.2,133.2,133.3,133.5,150.5,155.1,165.3,165.4,165.9,166.1; IR (KBr) ν: 3510.6 (O—H), 1735.8 (C=O), 1602.1, 1507.5 (C—C aromatic), 1266.8, 1093.9, 1068.9, 1009.2 (C—O—C) cm-1. Anal. calcd for C53H58O15Si: C 66.10, H 6.07; found C 66.31, H 6.26.3.3.10 2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)- 2-O-苯甲酰基-3-O-三乙基硅基-α-L-鼠李糖对甲氧基苯基苷(16)的合成
将2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷- (1→4)-3-O-三乙基硅基-α-L-鼠李糖对甲氧基苯基苷(15) (2.0 g, 2.1 mmol)溶于10 mL吡啶中, 0 ℃下加入苯甲酰氯(0.36 mL, 3.1 mmol), 然后移至室温下反应2 h. TLC检测反应完全后, 减压条件下浓缩, 粗产物用柱层析分离[V(石油醚):V(乙酸乙酯)=3:1]得到2.1 g白色泡沫状固体2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)-O-苯甲酰基-3-O-三乙基硅基-α-L-鼠李糖对甲氧基苯基苷(16), 产率95%.
$[\alpha ]_{\text{D}}^{25}$ -8.6 (c 0.1, CHCl3); m.p. 78.5~79.2 ℃; 1H NMR (CDCl3, 400 MHz) δ: 0.44~0.59 (m, 6H, CH2×3), 0.78 (t, J=7.9 Hz, 9H, CH3×3), 1.33 (d, J=6.1 Hz, 3H, H-6), 3.75 (s, 3H, OCH3), 3.90~3.94 (m, 1H), 4.07 (t, J=9.3 Hz, 1H), 4.17~4.21 (m, 1H), 4.36 (dd, J=9.2, 3.4 Hz, 1H), 4.46 (dd, J=12.1, 4.7 Hz, 1H), 4.82 (dd, J=12.1, 3.3 Hz, 1H), 5.30 (s, 1H), 5.35 (d, J=7.8 Hz, 1H, H-1'''), 5.40 (d, J=1.8 Hz, 1H, H-1''), 5.56 (dd, J=9.8, 7.8 Hz, 1H), 5.73 (t, J=9.6 Hz, 1H), 5.91 (t, J=9.6 Hz, 1H), 6.59~7.07 (m, 4H), 7.14~8.09 (m, 25H, ArH); 13C NMR (101 MHz, CDCl3) δ: 5.01, 6.85, 18.1, 55.8, 62.9, 67.9, 70.1, 70.6, 72.1, 72.8, 73.3, 73.7, 77.4, 96.8,100.5,114.7,118.2,128.3,128.4,128.5,128.56,128.9,128.9,129.2,129.6,129.7,129.8,129.8,129.9,129.9,130.0,130.2,133.2,133.2,133.3,133.3,133.6,150.5,155.3,165.3,165.6,166.0,166.2,166.3; IR (KBr) ν: 1734.8 (C=O), 1602.0, 1507.3 (C—C aromatic), 1268.1, 1108.1, 1069.2, 1026.8 (C—O—C) cm-1. Anal. calcd for C60H62O16Si: C 67.53, H 5.86; found C 67.34, H 5.66.3.3.11 2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)- 2-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(4)的合成
2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)-2-O-苯甲酰基-3-O-三乙基硅基-α-L-鼠李糖对甲氧基苯基苷(16) (2 g, 1.87 mmol)用50 mL二氯甲烷溶解, 加入硅胶负载高氯酸(HClO4-SiO2)体系(0.4 g, 0.2 mmol), 室温下反应3 h. TLC检测反应完全, 加入1.0 g碳酸氢钠中和, 铺硅藻土层抽滤, 滤液浓缩, 用柱层析分离[V(石油醚):V(乙酸乙酯)=4:1]得到1.63 g白色泡沫状固体2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)-2-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(4), 产率91%.
$[\alpha ]_{\text{D}}^{25}$ -13.0 (c 0.1, CHCl3); m.p. 109.3~110.5 ℃; 1H NMR (CDCl3, 400 MHz) δ: 1.32 (d, J=6.1 Hz, 3H, H-6), 3.74 (s, 3H, OCH3), 3.79 (t, J=9.5 Hz, 1H), 3.92~3.96 (m, 1H), 4.16~4.29 (m, 2H), 4.46 (dd, J=12.1, 5.6 Hz, 1H), 4.74 (dd, J=12.1, 3.1 Hz, 1H), 5.30 (d, J=8.0 Hz, 1H, H-1'''), 5.39 (d, J=1.8 Hz, 1H, H-1''), 5.42 (dd, J=3.6, 1.8 Hz, 1H), 5.56 (dd, J=9.8, 7.9 Hz, 1H), 5.66 (t, J=9.7 Hz, 1H), 5.91 (t, J=9.7 Hz, 1H), 6.71~6.83 (m, 2H, ArH), 6.88~6.97 (m, 2H, ArH), 7.12~8.06 (m, 25H, ArH); 13C NMR (101 MHz, CDCl3) δ: 17.9, 55.7, 63.2, 67.3, 69.9, 70.0, 72.4, 72.5, 72.9, 73.1, 81.5, 96.9,101.4,114.8,118.0,125.4,128.3,128.4,128.5,128.6,128.7,128.9,128.9,129.1,129.3,129.7,129.7,129.8,129.9,129.9,130.0,133.3,133.3,133.5,133.5,133.6,150.3,155.3,165.3,165.4,165.8,166.2,166.4; IR (KBr) ν: 3510.0 (O—H), 1730.8 (C=O), 1601.6, 1507.2 (C—C aromatic), 1268.3, 1108.9, 1069.2, 1026.9 (C—O—C) cm-1. Anal. calcd for C54H48O16: C 68.06, H 5.08; found C 68.24, H 5.19.3.3.12 2, 3, 4-三-O-苯甲酰基-α-L-鼠李糖苷-(1→3)- 2, 4-二-O-苯甲酰基-α-L-鼠李糖苷-(1→3)-[2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)]-2-O-苯甲酰基- α-L-鼠李糖对甲氧基苯基苷(17)的合成
将2, 3, 4, 6-四-O-苯甲酰基-β-D-葡萄糖苷-(1→4)- 2-O-苯甲酰基-α-L-鼠李糖对甲氧基苯基苷(4) (0.3 g, 0.3 mmol)、2, 3, 4-三-O-苯甲酰基-α-L-鼠李糖苷-(1→3)-2, 4-二-O-苯甲酰基-α-L-鼠李糖三氯乙酰亚胺酯(3) (0.4 g, 0.4 mmol)和4 Å分子筛(2 g)溶于40 mL无水二氯甲烷中, 氮气保护下搅拌0.5 h, 加入硅胶负载高氯酸(HClO4-SiO2)体系(0.06 g, 0.03 mmol), 室温下继续反应1 h, TLC检测反应完全, 铺硅藻土层抽滤, 二氯甲烷洗涤, 滤液依次用饱和NaHCO3水溶液(20 mL×2)和饱和食盐水(20 mL×2)洗涤, 有机相干燥, 过滤, 滤液浓缩, 粗产物用柱层析分离[V(石油醚):V(乙酸乙酯)=5:1], 得0.47 g四糖17, 产率88%.白色泡沫状固体, m.p. 110.9~111.7 ℃;
$[\alpha ]_{\text{D}}^{25}$ +34.4 (c 0.1, CHCl3); 1H NMR (CDCl3, 400 MHz) δ: 1.11 (d, J=6.2 Hz, 3H, H-6), 1.25 (d, J=6.2 Hz, 3H, H-6), 1.35 (d, J=6.1 Hz, 3H, H-6), 3.76 (s, 3H, OCH3), 3.92~3.99 (m, 1H), 4.07~4.12 (m, 1H), 4.18 (t, J=9.4 Hz, 1H), 4.22~4.28 (m, 1H), 4.40~4.55 (m, 2H), 4.86 (dd, J=12.1, 3.1 Hz, 1H), 4.89 (d, J=1.9 Hz, 1H), 5.25 (dd, J=2.9, 1.9 Hz, 1H), 5.38~5.51 (m, 4H), 5.51~5.67 (m, 5H), 5.76 (t, J=9.7 Hz, 1H), 6.32 (t, J=9.6 Hz, 1H), 6.76~7.00 (m, 6H, ArH), 7.14~8.47 (m, 48H, ArH); 13C NMR (101 MHz, CDCl3) δ: 17.6, 17.8, 18.0, 55.7, 62.7, 67.6, 67.7, 68.1, 69.6, 70.4, 70.7, 71.6, 72.2, 72.3, 72.3, 72.5, 72.7, 73.0, 73.7, 77.1, 77.4, 97.0, 97.9, 99.2, 99.8,114.8,118.2,125.4,128.1,128.2,128.3,128.3,128.4,128.5,128.5,128.6,128.9,128.9,129.1,129.2,129.3,129.5,129.5,129.7,129.8,129.8,129.9,130.1,130.7,132.9,133.0,133.2,133.2,133.2,133.4,133.4,133.5,133.8,137.9,137.9,150.2,150.2,155.4,155.4,164.8,164.9,165.4,165.4,165.6,165.7,166.0,166.2,166.2,166.4; IR (KBr) ν: 1733.0 (C=O), 1602.1, 1507.7 (C—C aromatic), 1264.7, 1106.8, 1064.2, 1027.0 (C—O—C) cm-1. Anal. calcd for C101H88O29: C 68.70, H 5.02; found C 68.56, H 5.11.3.3.13 α-L-鼠李糖苷-(1→3)-α-L-鼠李糖苷-(1→3)- [β-D-葡萄糖苷-(1→4)]-α-L-鼠李糖对甲氧基苯基苷(2)的合成
将化合物17 (0.4 g, 0.23 mmol)溶解在饱和的NH3/ MeOH (40 mL)溶液中, 室温下搅拌反应1周, 反应完全后, Sephadex LH-20 (MeOH)柱纯化得0.15 g四糖α-D-鼠李糖苷-(1→3)-α-D-鼠李糖苷-(1→3)-[β-D-葡萄糖苷-(1→4)-]α-D-鼠李糖对甲氧基苯基苷(2), 产率95%.白色泡沫状固体. m.p. 122.5~123.1 ℃; 1H NMR (D2O, 400 MHz) δ: 1.10~1.19 (m, 6H, H-6×2), 1.22 (d, J=6.2 Hz, 3H, H-6), 3.17 (t, J=8.5 Hz, 1H), 3.26~3.38 (m, 4H), 3.44 (t, J=9.6 Hz, 1H), 3.59~3.63 (m, 1H), 3.64 (s, 3H, OCH3), 3.70~3.82 (m, 7H), 3.93~3.98 (m, 1H), 4.04~4.07 (m, 2H), 4.11~4.12 (m, 1H), 4.52 (d, J=7.9 Hz, 1H, HGlu-1'''), 4.94 (s, 1H, Hrha-1), 4.95 (s, 1H, Hrha-1''), 5.24 (s, 1H, Hrha-1'), 6.79~6.94 (m, 4H); 13C NMR (101 MHz, D2O) δ: 16.8, 17.2, 17.3, 55.9, 60.8, 68.4, 69.2, 69.4, 69.8, 69.9, 70.1, 70.2, 70.3, 71.4, 72.1, 73.3, 75.9, 76.1, 77.6, 78.5, 79.3, 98.9,102.5,102.8,103.0,115.2,118.8,149.6,154.8; IR (KBr) ν: 3426.4 (O—H), 1508.6 (C—C aromatic), 1128.1, 1069.5, 1040.1 (C—O—C) cm-1; HRMS (ESI) for C31H48NaO19 (M+Na)+ 747.2687, found 747.2684. Anal. calcd for C31H48O19: C 51.38, H 6.68; found C 51.40, H 6.63.
辅助材料(Supporting Information) 化合物2~5和8~17的1H NMR, 13C NMR和IR图谱.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.
-
-
[1]
(a) Camporese, G.; Bernardi, E. Curr. Opin. Pulm. Med. 2009, 15, 443.
(b) Hsu, C. H.; Hung, S. C.; Wu, C. Y.; Wong, C. H. Angew. Chem., Int. Ed. 2011, 50, 11872. -
[2]
Mrozik, H.; Eskola, P.; Linn, B. O. Experientia 1989, 45, 315. doi: 10.1007/BF01951823
-
[3]
Hu, B. Y.; Zhao, H. Q.; Chen, Z. L.; Xu, C.; Zhao, J. Z.; Zhao, W. T. Molecules 2018, 23, 709. doi: 10.3390/molecules23040709
-
[4]
(a) Smeekens, S.; Ma, J.; Hanson, J. Curr. Opin. Plant Biol. 2010, 13, 274.
(b) Ciereszko, I. Acta Soc. Bot. Pol. 2018, 87, 3583. -
[5]
Shibuya, N.; Minami, E. Physiol. Mol. Plant Pathol 2001, 59, 223. doi: 10.1006/pmpp.2001.0364
-
[6]
(a) Chai, Y. H.; Feng, Y. L.; Wu, J. J.; Deng, C. Q.; Liu, A. Y.; Zhang, Q. Chin. Chem. Lett. 2017, 28, 1693.
(b) Hanessian, S.; Lou, B. Chem. Rev. 2000, 100, 4443.
(c) Jensen, K. J. Chem. Soc., Perkin Trans. 2 2002, 2219. -
[7]
Song, W. Z.; Wang, S. J.; Tang, W. P. Chem.-Asian J. 2017, 12, 1027. doi: 10.1002/asia.201700212
-
[8]
Fischer, E. Ber. Desch. Chem. Ges. 1893, 26, 2400. doi: 10.1002/cber.18930260327
-
[9]
Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21. doi: 10.1016/S0065-2318(08)60150-X
-
[10]
(a) Nielsen, M. M.; Pedersen, C. M. Chem. Rev. 2018, 118, 8285.
(b) Toshima, K.; Sasaki, K. Comprehensive Glycoscience, Vol. 1, Elsevier, Amsterdam, 2007, p. 261. -
[11]
(a) Khan, A. T.; Choudhury, L. H.; Ghosh, S. ChemInform 2006, 255, 230.
(b) Mohammad, A. B.; Nemati, F.; Mahdavinia, G. H. Tetrahedron Lett. 2007, 48, 6801.
(c) Yan, S. Q.; Zhang, W.; Ding, N.; Li, Y. X. Chin. J. Org. Chem. 2012, 32, 2081(in Chinese).
(颜世强, 张伟, 丁宁, 李英霞, 有机化学, 2012, 32, 2081.)
(d) Chun, Y. X.; Yan, S. Q.; Li, X. P.; Ding N.; Zhang, W.; Wang, P.; Li, M.; Li Y. X. Tetrahedron Lett. 2011, 6196. -
[12]
(a) Sigida, E. N.; Fedonenko, Y. P.; Shashkov, A. S.; Toukach, P. V.; Shelud'ko, A. V.; Zdorovenko, E. L.; Knirel, Y. A.; Konnova, S. A. Int. J. Biol. Macromol. 2019, 126, 246.
(b) Zong, G. H.; Cai, X. Y.; Liang, X. M.; Zhang, J. J.; Wang, D. Q. Carbohydr. Res. 2011, 346, 2533. -
[13]
(a) Corsaro, M. M.; Castro, C. D.; Molinaro, A.; Parrilli, M. Recent Res. Dev. Phytochem. 2001, 5, 119.
(b) Ayers, A. R.; Ebel, J.; Valent, B. Plant. Phytopathol. 1976, 57, 760.
(c) Sigida, E. N.; Fedonenko, Y. P.; Shashkov, A. S.; Shelud'ko, A. V.; Zdorovenko, E. L.; Konnova, S. A.; Knirel, Y. A. Carbohydr. Res. 2019, 478, 54. -
[14]
(a) Bini, D.; Forcella, M.; Cipolla, L.; Fusi, P. Eur. J. Org. Chem. 2011, 23, 3995.
(b) Baldani, J. I.; Baldani, V. L. An. Acad. Bras. Cienc. 2005, 77, 549.
(c) Zong, G. H.; Liang, X. M.; Zhang, J. J.; Duan, L. S.; Tan, W. M.; Wang, D. Q. Carbohydr. Res. 2014, 388, 87. -
[15]
(a) Ibrahim, I. M.; Sigida, E. N.; Kokoulin, M. S.; Fedonenko, Y. P.; Konnova, S. A. Carbohydr. Res. 2019, 473, 1.
(b) Zhao, H. Q.; Jia, H. Q.; Duan, H. X.; Zhang, J. J.; Wang, D. Q.; Liang, X. M. J. Carbohydr. Chem. 2010, 29, 1.
(c) Prashant, R. V.; Balaram, M. Carbohydr. Res. 2010, 345, 432.
(d) Zong, G. H.; Feng, Y. C.; Liang, X. M.; Chen, L. Z.; Zhang, J. J.; Wang, D. Q. Carbohydr. Res. 2010, 345, 2067. -
[16]
(a) Sigida, E. N.; Fedonenko, Y. P.; Shashkov, A. S.; Grinev, V. S.; Zdorovenko, E. L.; Konnova, S. A.; Ignatov, V. V.; Knirel, Y. A. Carbohydr. Res. 2014, 398, 40.
(b) Fedonenko, Y. P.; Sigida, E. N.; Konnova, S. A.; Ignatov, V. V. Russ. Chem. Bull. 2015, 64, 1024. -
[17]
Yan, S. Q.; Ding, N.; Zhang, W.; Wang, P.; Li Y. X.; Li, M. Carbohydr. Res. 2012, 354, 6.
-
[18]
(a) Daniel, B. W.; Peter, H. S. Angew. Chem. 2005, 44, 6315.
(b) Cai, X. Y.; Zong, G. H.; Xu, Y. J.; Zhang, J. J.; Liang, X. M.; Wang, D. Q. Carbohydr. Res. 2010, 345, 1230.
(c) Xiong, J. L.; Yan, S. Q.; Ding, N.; Zhang, W.; Li, Y. X. J. Carbohydr. Chem. 2013, 32, 184. -
[19]
Charles, G.; Jean, L.; Maxime, L.; Philippe, D.; Andre, P. Bioorg. Med. Chem. 2006, 14, 6713. doi: 10.1016/j.bmc.2006.05.075
-
[20]
Kakali, S.; Indrani, M.; Nirmolendu, R. J. Carbohydr. Chem. 2011, 22, 95.
-
[1]
-
图式 3 α-L-鼠李糖供体5、受体7和8的合成
Scheme 3 Synthesis of α-L-rhamnose donor 5, receptors 7 and 8
Reagents and conditions: (a) BzCl, pyridine, 0 ℃ to r.t., 2 h; then MeCN, HClO4-SiO2, 3 h, 50 ℃, 85% for two steps; (b) TESCl, imidazole, CH2Cl2, N2, -10 ℃ to r.t., 2 h, 90%; (c) BzCl, pyridine, 0 ℃ to r.t., 2 h, 97%; (d) HClO4-SiO2, CH2Cl2, 3 h, 92%.
图 4 四糖的合成
Figure 4 Synthesis of tetrasaccharide
Reagents and conditions: (a) HClO4-SiO2, N2, CH2Cl2, 1.5 h, 92%; (b) (i) (NH4)2Ce(NO3)6, MeCN/H2O (V:V=4:1), r.t., 0.5 h; (ii) CCl3CN, DBU, N2, CH2Cl2, 2 h, r.t., 83% for two steps; (c) HClO4-SiO2, N2, CH2Cl2, 1.5 h, 91%; (d) MeCN, HClO4-SiO2, 3 h, 50 ℃, 93%; (e) TESCl, imidazole, CH2Cl2, N2, -10 ℃ to r.t., 2 h, 92%; (f) BzCl, pyridine, 0 ℃ to r.t., 2 h, 95%; (g) HClO4-SiO2, CH2Cl2, 3 h, 91%; (h) HClO4-SiO2, N2, CH2Cl2, 1.5 h, 88%; (i) MeONH4, MeOH, 7 d, 95%
-
扫一扫看文章
计量
- PDF下载量: 10
- 文章访问数: 1502
- HTML全文浏览量: 292

下载:
下载: