

Three New Lanthanide Coordination Polymers Constructed from 2,6-Bis(pyrazin-2-yl)pyridine-4-carboxylate: Syntheses, Structures and Luminescence
English
Three New Lanthanide Coordination Polymers Constructed from 2,6-Bis(pyrazin-2-yl)pyridine-4-carboxylate: Syntheses, Structures and Luminescence
-
Key words:
- lanthanide
- / coordination polymers
- / crystal structure
- / luminescence properties
-
1. INTRODUCTION
Over the past two decades, the design and construction of lanthanide metal-organic coordination polymers (Ln-Cps) were paid considerable attention due to their fascinating architectures and potential applications[1-3]. The shielding of 4f orbitals in lanthanide ions by the filled 5p66s2 subshells can result in special optical features and the luminescence of lanthanide coordination polymers has unique properties with their high color pureness, narrow band emission, long lifetime and high quantum yields[4]. Therefore, many tunable luminescent lanthanide Cps were reported in many potential applications such as sensors[5], lighting devices[6], biomedical probes[7], asymmetric catalysts[8], luminescent probes[9] and molecular magnetism[10]. The design and synthesis of lanthanide metal-organic coordination polymers remain a challenge because the self-assembly process is affected by many factors such as the size of metal ion, the metal to ligand molar ratio during preparation, solvent, pH value and so on[11-13]. Amongst, the organic ligands are considered to be the most important factor that affects the structures and properties of the lanthanide coordination polymers.
Lanthanide ions display high and variable coordination numbers with small energy difference between them, resulting in difficulty in controlling the synthesis of lanthanide complexes, in comparison to the d-block metals. And the absorption coefficients and luminescence intensities of pure rare-earth ions are very low, and the 4f-4f transitions of lanthanide are Laporte-forbidden. In order to overcome this drawback, the organic ligands containing appropriate chromophores can be chosen to absorb light in the UV region and transfer the excitation energy from the ligands to the lanthanide ions via an "antenna effect"[14]. Meanwhile, the ligands can protect the Ln(Ⅲ) ions from vibrational coupling that quenches the luminescence. In addition, carboxylic oxygen atoms have a strong affinity toward Ln(Ⅲ) ions, so aromatic carboxylic acid ligands are usually chosen as a kind of excellent organic ligand on account of the presence of hard donor oxygen atoms and high affinity for lanthanide cations[15]. In our previous work, we have previously reported some coordination polymers based on 2,6-bis(pyrazin-2-yl)pyridine-4-carboxylate under hydrothermal conditions with Zn(Ⅱ) ions[16]. In those polymers, Hbppc was coordinated to the metal ions with a great variety of coordination modes. Meanwhile, Hbppc, as a chromophoric antenna ligand, containing one pyridyl, two pyrazinyl and one carboxyl groups can not only transfer their energy towards the lanthanide center which gets indirectly excited and emits light during the relaxation process, but also increases the thermal stability and fulfills the coordination numbers of lanthanide complexes. With an aim to broaden our research line in this area, herein we report the construction of three new luminescent metal-organic coordination complexes, namely, [Ln(bppc)2(suc)0.5(H2O)]n·nH2O (Ln = Eu(1), Ln = Dy(2), Ln = Tb(3)) under hydrothermal conditions. Moreover, the thermal stability and photoluminescence property of each coordination polymer were investigated.
2. EXPERIMENTAL
2.1 Materials and general method
Hbppc ligand was prepared by us. Other chemicals and reagents were purchased commercially and used without further purification. Elemental analyses (C, H, N) were determined with a Vario EL Ⅲ elemental analyzer. Infrared spectra were recorded on a Bruker EQUINOX55 spectrometer as KBr pellets in the range of 4000~400 cm–1. Fluorescence spectra were performed on a Hitachi F-4500 fluorescence spectrophotometer at room temperature. Thermal gravimetry analyses (TGA) were carried out with a Universal V2.6 DTA system at a rate of 10 ℃/min in a nitrogen atmosphere.
2.2 Synthesis of [Eu(bppc)2(suc)0.5(H2O)]n·nH2O (1)
A mixture of Hbppc (27.9 mg, 0.1 mmol), Eu(NO3)3·6H2O (22.0 mg, 0.05 mmol) and H2suc (12.1 mg, 0.1 mmol) in deionized water (10 mL) was stirred and the pH was adjusted to 6.5 with NaOH. After being stirred for 30 min, the mixture was sealed in a 25 mL Teflon-lined stainless-vessel and heated to 180 ℃ for 72 h. Then the reaction system was cooled to room temperature during 48 h to give rise to colorless needle-shaped crystals of 1 in ca. 51% yield based on Eu, which were collected by filtration and washed with deionized water. Anal. Calcd. for C60H36Eu2N20O16 (1597.01): C, 44.61; H, 2.14; N, 18.58%. Found: C, 44.46; H, 2.01; N, 18.21%. IR (KBr, cm–1): 3407(s), 2026(w), 1837(w), 1597(m), 1543(s), 1475(m), 1448(s), 1330(m), 1264(w), 1237(m), 1161(m), 1108(m), 1085(w), 1022(m), 921(w), 858(w), 794(m), 701(m), 695(w), 450(w).
2.3 Synthesis of [Dy(bppc)2(suc)0.5(H2O)]n·nH2O (2)
Compound 2 was synthesized similar to 1 except that Eu(NO3)3·6H2O (22.0 mg, 0.05 mmol) was used instead of DyCl3·6H2O (37.7 mg, 0.1 mmol). The crystals were filtered and washed with deionized water and left to air-dry. Yield: 45% based on Dy. Anal. Calcd. for C60H44Dy2N20O16 (1626.15): C, 44.32; H, 2.73; N, 17.23%. Found: C, 44.13; H, 2.48; N, 17.05%. IR (KBr, cm–1): 3422(m), 1575(s), 1548(s), 1447(s), 1411(s), 1377(m), 1332(w), 1262(w), 1239(m), 1183(w), 1109(m), 1054(w), 1042(w), 1019(m), 907(w), 868(w), 796(m), 759(w), 690(m), 456(w), 425(w).
2.4 Synthesis of [Tb(bppc)2(suc)0.5(H2O)]n·nH2O (3)
Compound 3 was synthesized similar to 1 except that TbCl3·6H2O (37.2 mg, 0.1 mmol) was substituted by Eu(NO3)3·6H2O (22.0 mg, 0.05 mmol). The crystals were filtered and washed with deionized water and left to air-dry (yield 52% based on Tb). Colorless block-shaped crystals were obtained in ca. 50% yield based on Tb. Anal. Calcd. for C60H44N20O16Tb2 (1653.19): C, 44.51; H, 2.74; N, 17.30%. Found: C, 44.18; H, 2.29; N, 17.17%. IR (KBr, cm–1): 3420(m), 1548(vs), 1442(m), 1408(s), 1331(w), 1304(w), 1237(w), 1179(w), 1109(w), 1020(w), 908(w), 863(w), 794(w), 690(w), 425(w).
2.5 X-ray crystallography
Intensity data were collected on a Bruker Smart APEX Ⅱ CCD diffractometer with graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å) at room temperature. Empirical absorption corrections were applied using the SADABS program. The structures were solved by direct methods and refined by full-matrix least-squares on F2 using SHELXL-97 program[17]. All non-hydrogen atoms were refined anisotropically and the hydrogen atoms of organic ligands were generated geometrically. Selected bond distances and bond angles for compounds 1~3 are listed in Tables 1~3.
Table 1
Bond Dist. Bond Dist. Bond Dist. Eu(1)–O(3) 2.318(4) Eu(1)–O(1) 2.339(4) Eu(1)–O(4)a 2.342(5) Eu(1)–O(2)b 2.410(4) Eu(1)–O(7) 2.418(5) Eu(1)–O(5)b 2.421(4) Eu(1)–O(6) 2.445(5) Eu(1)–O(5) 2.540(4) Angle (°) Angle (°) Angle (°) Eu(1)–Eu(1)b 3.9949(9) O(3)–Eu(1)–O(1) 149.98(17) O(3)–Eu(1)–O(4)a 78.93(17) O(1)–Eu(1)–O(4)a 75.30(17) O(3)–Eu(1)–O(2)b 73.74(16) O(1)–Eu(1)–O(2)b 136.14(16) O(4)a–Eu(1)–O(2)b 142.32(16) O(3)–Eu(1)–O(7) 78.76(17) O(1)–Eu(1)–O(7) 83.83(18) O(4)a–Eu(1)–O(7) 84.9(2) O(2)b–Eu(1)–O(7) 113.93(18) O(3)–Eu(1)–O(5)b 129.85(16) O(1)–Eu(1)–O(5)b 71.08(17) O(4)a–Eu(1)–O(5)b 145.30(16) O(2)b–Eu(1)–O(5)b 71.78(15) O(7)–Eu(1)–O(5)b 83.20(17) O(3)–Eu(1)–O(6) 83.77(17) O(1)–Eu(1)–O(6) 102.73(19) O(4)a–Eu(1)–O(6) 72.68(17) O(2)b–Eu(1)–O(6) 78.95(17) O(7)–Eu(1)–O(6) 153.86(18) O(5)b–Eu(1)–O(6) 122.92(15) O(3)–Eu(1)–O(5) 127.95(15) O(1)–Eu(1)–O(5) 74.97(16) O(4)a–Eu(1)–O(5) 106.67(17) O(2)b–Eu(1)–O(5) 72.41(15) O(7)–Eu(1)–O(5) 151.96(16) O(5)b–Eu(1)–O(5) 72.77(15) O(6)–Eu(1)–O(5) 51.81(14) O(3)–Eu(1)–Eu(1)b 141.21(12) O(1)–Eu(1)–Eu(1)b 68.81(12) O(4)a–Eu(1)–Eu(1)b 132.90(13) O(2)b–Eu(1)–Eu(1)b 67.57(10) O(7)–Eu(1)–Eu(1)b 119.31(13) O(5)b–Eu(1)–Eu(1)b 37.40(10) O(6)–Eu(1)–Eu(1)b 86.34(11) O(5)–Eu(1)–Eu(1)b 35.37(9) Table 2
Bond Dist. Bond Dist. Bond Dist. Dy(1)–O(1) 2.272(3) Dy(1)–O(3) 2.304(3) Dy(1)–O(2)a 2.319(3) Dy(1)–O(7) 2.361(3) Dy(1)–O(4)b 2.374(3) Dy(1)–O(6)b 2.380(3) Dy(1)–O(5) 2.401(3) Dy(1)–O(6) 2.512(3) Dy(1)–C(29) 2.823(4) Dy(1)–Dy(1)b 3.9500(5) Angle (°) Angle (°) Angle (°) O(1)–Dy(1)–O(3) 149.17(11) O(1)–Dy(1)–O(2)a 78.19(12) O(3)–Dy(1)–O(2)a 75.30(11) O(1)–Dy(1)–O(7) 78.12(12) O(3)–Dy(1)–O(7) 84.27(13) O(2)a–Dy(1)–O(7) 85.30(14) O(1)–Dy(1)–O(4)b 73.79(11) O(3)–Dy(1)–O(4)b 136.85(11) O(2)a–Dy(1)–O(4)b 142.18(11) O(7)–Dy(1)–O(4)b 112.63(13) O(1)–Dy(1)–O(6)b 129.82(11) O(3)–Dy(1)–O(6)b 71.38(11) O(2)a–Dy(1)–O(6)b 145.38(11) O(7)–Dy(1)–O(6)b 82.36(12) O(4)b–Dy(1)–O(6)b 72.07(11) O(1)–Dy(1)–O(5) 84.09(12) O(3)–Dy(1)–O(5) 102.63(13) O(2)a–Dy(1)–O(5) 72.88(11) O(7)–Dy(1)–O(5) 154.27(12) O(4)b–Dy(1)–O(5) 79.37(11) O(3)–Dy(1)–O(6) 75.15(11) O(2)a–Dy(1)–O(6) 107.94(12) O(7)–Dy(1)–O(6) 151.32(11) O(4)b–Dy(1)–O(6) 72.56(11) O(6)b–Dy(1)–O(6) 72.35(11) O(5)–Dy(1)–O(6) 52.58(10) O(1)–Dy(1)–C(29) 105.16(12) O(3)–Dy(1)–C(29) 91.64(13) O(2)a–Dy(1)–C(29) 92.79(12) O(7)–Dy(1)–C(29) 175.81(13) O(4)b–Dy(1)–C(29) 71.07(12) O(6)b–Dy(1)–C(29) 97.23(12) O(5)–Dy(1)–C(29) 26.38(11) O(6)–Dy(1)–C(29) 26.59(11) O(1)–Dy(1)–Dy(1)b 141.64(8) O(3)–Dy(1)–Dy(1)b 69.18(8) O(2)a–Dy(1)–Dy(1)b 133.77(9) O(7)–Dy(1)–Dy(1)b 118.55(9) O(4)b–Dy(1)–Dy(1)b 67.90(7) O(6)b–Dy(1)–Dy(1)b 37.31(7) O(5)–Dy(1)–Dy(1)b 86.84(7) O(6)–Dy(1)–Dy(1)b 35.04(7) Table 3
Bond Dist. Bond Dist. Bond Dist. Tb(1)–O(3) 2.289(3) Tb(1)–O(1) 2.311(3) Tb(1)–O(4)a 2.324(3) Tb(1)–O(7) 2.369(3) Tb(1)–O(2)b 2.385(3) Tb(1)–O(5) 2.388(3) Tb(1)–O(6)b 2.412(3) Tb(1)–O(5)b 2.526(3) Tb(1)–C(29)b 2.823(4) Tb(1)–Tb(1)b 3.9627(5) Angle (°) Angle (°) Angle (°) O(3)–Tb(1)–O(1) 149.28(10) O(3)–Tb(1)–O(4)a 78.32(10) O(1)–Tb(1)–O(4)a 75.18(10) O(3)–Tb(1)–O(7) 78.36(10) O(1)–Tb(1)–O(7) 83.98(11) O(4)a–Tb(1)–O(7) 84.74(12) O(3)–Tb(1)–O(2)b 73.70(9) O(1)–Tb(1)–O(2)b 136.86(9) O(4)a–Tb(1)–O(2)b 142.15(10) O(3)–Tb(1)–O(5) 129.78(10) O(1)–Tb(1)–O(5) 71.48(10) O(4)a–Tb(1)–O(5) 145.35(9) O(7)–Tb(1)–O(5) 82.69(11) O(2)b–Tb(1)–O(5) 72.11(9) O(3)–Tb(1)–O(6)b 83.63(10) O(1)–Tb(1)–O(6)b 102.94(11) O(4)a–Tb(1)–O(6)b 73.01(11) O(7)–Tb(1)–O(6)b 153.80(11) O(2)b–Tb(1)–O(6)b 78.96(10) O(5)–Tb(1)–O(6)b 123.50(9) O(3)–Tb(1)–O(5)b 128.52(9) O(1)–Tb(1)–O(5)b 75.15(10) O(4)a–Tb(1)–O(5) 107.78(10) O(7)–Tb(1)–O(5)b 151.54(10) O(2)b–Tb(1)–O(5)b 72.49(9) O(5)–Tb(1)–O(5)b 72.54(10) O(6)b–Tb(1)–O(5)b 52.63(9) O(3)–Tb(1)–C(29)b 104.64(11) O(1)–Tb(1)–C(29)b 91.98(11) O(4)a–Tb(1)–C(29)b 92.82(11) O(7)–Tb(1)–C(29)b 175.70(11) O(2)b–Tb(1)–C(29)b 70.67(11) O(5)–Tb(1)–C(29)b 97.45(10) O(6)b–Tb(1)–C(29)b 26.31(10) O(5)b–Tb(1)–C(29)b 26.74(10) O(3)–Tb(1)–Tb(1)b 141.49(7) O(1)–Tb(1)–Tb(1)b 69.22(7) O(4)a–Tb(1)–Tb(1)b 133.66(8) O(7)–Tb(1)–Tb(1)b 118.93(8) O(2)b–Tb(1)–Tb(1)b 67.86(6) O(5)–Tb(1)–Tb(1)b 37.45(7) O(6)b–Tb(1)–Tb(1)b 86.89(7) O(5)b–Tb(1)–Tb(1)a 35.09(6) C(29)b–Tb(1)–Tb(1)b 60.59(8) Symmetry transformations for 1: a: –x, –y+1, –z+1; b: –x, –y, –z+1; c: –x+1, –y, –z+1; 2: a: –x, –y, –z+2; b: –x, –y+1,
–z+2; c: –x–1, –y+1, –z+2; 3: a: –x, –y, –z+2; b: –x, –y+1, –z+2; c: –x+1, –y+1, –z+23. RESULTS AND DISCUSSION
3.1 Structural description of compounds 1~3
Since compounds 1~3 are isostructural, only structure of 1 is described in detail. Single-crystal X-ray analysis reveals that 1 crystallizes in triclinic system with space group P
$ \overline 1 $ , a = 8.7218(14), b = 9.6846(16), c = 18.580(3) Å, α = 76.369(3)°, β = 86.174(3)°, γ = 76.100(2)° and Z = 1. The asymmetric unit of 1 contains one Eu(Ⅲ) cation, two (bppc)– and half an (suc)2– anions, one coordinated and one lattice water molecules (Fig. 1a). The coordination polyhedron around EuⅢ is an eight-coordinated dodecahedron consisting of four oxygen (O(1), O(1A), O(3), O(4A)) (Eu(1)–O(1) = 2.339(4) Å, Eu(1)–O(1A) = 2.339(4) Å, Eu(1)–O(3) = 2.318(4) Å, Eu(1)–O(4A) = 2.342(5) Å) (O(1A), O(2C), O(3B), O(4C)) atoms from four (bppc)– ligands, three oxygen atoms (O(5), O(5A), O(6)) (Eu(1)–O(5) = 2.540(4) Å, Eu(1)–O(5A) = 2.421(4) Å, Eu(1)–O(6) = 2.445(5) Å) from two (suc)2– anion and one oxygen (O(7)) (Eu(1)–O(7) = 2.418(5) Å) from one coordinated water molecule. The Eu–O bond lengths fall in the range of 2.318(4)~2.540(4) Å, which is comparable to the reported values in Eu(Ⅲ) complexes[18]. Eu(Ⅲ) cations are linked by carboxylate groups from (bppc)– ligands in the bidentate bridging mode to form two kinds of eight-membered rings (Fig. 1b), which are arranged alternately by sharing Eu atoms, generating a onedimensional ring chain with (bppc)– ligands (Fig. 1c). In addition, the central pyridy rings of (bppc)– ligands with the pyrazinyl rings of adjacent (bppc)– ligands show two types of π⋅⋅⋅π stacking interactions with the centroid-to-centroid distances of 3.635 and 3.581 Å (Fig. 1d). Furthermore, the ring chains are further connected into a 2D layer through the carboxylate groups of (bppc)– and (suc)2– ligands (Fig. 1e).Figure 1
3.3 IR spectra
IR spectra of compounds 1~3 were performed as KBr pellets in the 4000~400 cm–1 range. The general features of the IR spectra for 1~3 are very similar throughout the region from 3000 to 3500 cm–1, and the strong bands at 3407 cm–1 for 1, 3422 cm–1 for 2 and 3420 cm–1 for 3 are assigned to the O–H vibrations of coordination and lattice water molecules. The peaks at 1597, 1575 and 1548 cm–1 are assigned to the skeleton vibration of C=N in 1~3, respectively, which display certain shifts in contrast with 1598 cm–1 in the ligand. It is thus assumed that nitrogen atoms in the ligand coordinate to metal atoms. The absence of any strong bands around 1700 cm–1 indicates that the carboxylate groups of ligand are completely deprotonated. The Δ(νas(CO2)– νs(CO2)) < 200 cm-1 for all the three compounds (Δ = 128 cm–1 for 1, 129 cm–1 for 2 and 195 cm–1 for 3) suggests that the carboxylate is coordinated to metal ions only in a bidentate mode[19]. These IR spectra are in good agreement with the result of X-ray structural analysis.
3.3 Luminescent properties
The luminescent properties of 1 to 3 were investigated in the solid state at room temperature. The emission spectra of the three compounds upon excitation at 365 nm exhibit the characteristic emission of Eu(Ⅲ), Dy(Ⅲ) and Tb(Ⅲ) ions. For 1, the four sharp characteristic peaks shown in Fig. 2a belong to the transitions of 5D0→7F1 (594 nm), 5D0→7F2 (620 nm), 5D0→7F3 (652 nm) and 5D0→7F4 (700 nm). The intensity of the 5D0→7F2 transition (electric dipole) is stronger than that of 5D0→7F1 transition (magnetic dipole), indicating the coordination environment of the Eu3+ ion is asymmetric, which is confirmed by crystallographic analyses. For 2, the two characteristic emission bands of the Dy(Ⅲ) cation can be seen in the emission spectra (Fig. 2b), which are attributed to 4F9/2→6H15/2 (481 nm) and 4F9/2→6H13/2 (575 nm) transitions. For 3, the four characteristic bands of Tb(Ⅲ) can be seen in the emission spectra, as depicted in Fig. 2c, which are attributed to 5D4→7F6 (491 nm), 5D4→7F5 (546 nm), 5D4→7F4 (584 nm) and 5D4→7F3 (622 nm) transitions. Compared with the emission spectra of the four compounds, the energy transfers from ligand to Eu(Ⅲ) and Tb(Ⅲ) cations are more efficient than those to Dy(Ⅲ) cations, which is in good agreement with the similar compounds reported by literature[20].
Figure 2
3.4 Thermogravimetric analysis
Thermogravimetric analyses (TGA) of compounds 1 to 3 were carried out to examine their thermal stabilities (Fig. 3). The TGA curves of compounds 1 to 3 are very similar and stable up to about 360 ℃. Because the profiles of the three compounds are semblable, only compound 1 is described in detail. The weight loss of 1.68% between 30 and 120 ℃ corresponds to the release of all uncoordinated water molecules (calcd. 1.45%). The compound lost coordinated water molecules between 120 and 150 ℃, and its framework did not collapse until 370 ℃. Above that temperature, the weight loss is due to the decomposition of the organic ligands and the whole framework is collapsed. Finally, compound 1 is completely collapsed into the metal oxides (Eu2O3).
1
Figure 3
4. CONCLUSION
In summary, three new Ln(Ⅲ)-based coordination compounds have been synthesized by the assembly of Hbppc, (suc)2– ligands and Ln salts under hydrothermal conditions. These compounds are isostructural and show a 2D structure. Moreover, compounds 1~3 exhibit characteristic lanthanide-centered luminescence and have great stability.
-
-
[1]
Gao, C. H.; Zhang, L.; Hou, G. F.; Ma, D. S.; Jiang, W. H.; Yu, Y. H. Syntheses, structures and properties of chiral Ln(Ⅲ) coordination polymers based on (R)-4-(4-(1-carboxyethoxy)phenoxy)-3-fluorobenzoic acid. Inorg. Chem. Commun. 2017, 78, 70–73. doi: 10.1016/j.inoche.2017.03.001
-
[2]
Barry, D. E.; Caffrey, D. F.; Gunnlaugsson, T. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands. Chem. Soc. Rev. 2016, 45, 3244–3274. doi: 10.1039/C6CS00116E
-
[3]
Wang, X. Y.; Yan, P. F.; Li, Y. X.; An, G. H.; Yao, X.; Li, G. M. Highly efficient white-light emission and UV-visible/NIR luminescence sensing of lanthanide metal-organic frameworks. Cryst. Growth Des. 2017, 17, 2178–2185. doi: 10.1021/acs.cgd.7b00112
-
[4]
Zhu, M. M.; Zhang, Z.; Ren, N.; Wang, S. P.; Zhang, J. J. Rare earth complexes with 3, 4-dimethylbenzoic acid and 2, 2: 6΄, 2΄΄-terpyridine: synthesis, crystal structures, luminescence and thermodynamic properties. Inorg. Chim. Acta 2019, 484, 311–318. doi: 10.1016/j.ica.2018.09.061
-
[5]
Zheng, K.; Liu, Z. Q.; Huang, Y.; Chen, F.; Zeng, C. H.; Zhong, S. L.; Ng, S. W. Highly luminescent Ln-MOFs based on 1, 3-adamantanediacetic acid as bifunctional sensor. Sensor. Actuat. B 2018, 257, 705–713. doi: 10.1016/j.snb.2017.11.009
-
[6]
Yuan, G.; Zhang, C.; Shao, K. Z.; Hao, X. R.; Zhou, W. L.; Wang, F. C.; Su, Z. M. A series of lanthanide coordination polymers based on flexible bis-(imidazole-4, 5-dicarboxylate) ligand: syntheses, structures and fluorescent properties. Inorg. Chem. Commun. 2019, 99, 126–130. doi: 10.1016/j.inoche.2018.11.017
-
[7]
Stouder, C. E.; Warren, K. J.; Perdue, O. F.; Stewart, A. L.; Padgett, C. W.; Amonette, A. J.; Saha, A. Synthesis, characterization, computational study, and biological relevance of a family of isostructural, mononuclear Ln (Ln = Gd, Tb, Dy, Ho, Er) complexes containing pyridoxine, an essential ingredient of vitamin B6 enzyme. Inorg. Chim. Acta 2017, 464, 172–181. doi: 10.1016/j.ica.2017.05.006
-
[8]
Zhang, C. C.; Wei, S. Y.; Sun, L. X.; Xu, F.; Huang, P. R.; Peng, H. L. Synthesis, structure and photocatalysis properties of two 3D isostructural Ln (Ⅲ)-MOFs based 2,6-pyridinedicarboxylic acid. J. Mater. Sci. Technol. 2018, 34, 1526–1531. doi: 10.1016/j.jmst.2018.03.011
-
[9]
Zhang, X.; Yang, P. P.; Wang, D.; Xu, J.; Li, C. X.; Gai, S.; Lin, J. La(OH)3: Ln3+ and La2O3: Ln3+ (Ln = Yb/Er, Yb/Tm, Yb/Ho) microrods: synthesis and up-conversion luminescence properties. Cryst. Growth Des. 2012, 12, 306–312. doi: 10.1021/cg201091u
-
[10]
Wang, W. M.; Liu, H. H.; He, L T.; Han, X. R.; Wu, Z. L.; Ran, Y. G.; Zou, J. Y.; Fang, M. Structures, luminescence properties, magnetocaloric effect and slow magnetic relaxation of three Ln(Ⅲ) complexes based on 8 hydroxyquinoline Schiff-base ligand. Polyhedron 2017, 133, 119–124. doi: 10.1016/j.poly.2017.04.034
-
[11]
Gangu, K. K.; Maddila, S.; Jonnalagadda, S. B. A review on synthesis, crystal structure and functionality of naphthalenedicarboxylate ligated metal-organic frameworks. Inorg. Chim. Acta 2017, 466, 308–323. doi: 10.1016/j.ica.2017.06.038
-
[12]
Miao, L. L.; Guo, M. Y.; Wu, J.; Lu, Y. M.; Wu, Q.; Bai, Y.; Li, Q. Y.; Yang, G. W. Counter anion and pH directed assembly of europium(Ⅲ) compounds based on tetrazole containing carboxylic acids. Inorg. Chim. Acta 2016, 450, 176–181. doi: 10.1016/j.ica.2016.05.041
-
[13]
Knorr, M.; Guyon, F.; Khatyr, A.; Strohmann, C.; Allain, M.; Aly, S. M.; Lapprand, A.; Fortin, D.; Harvey, P. D. Construction of (CuX)2n cluster-containing (X = Br, I; n = 1, 2) coordination polymers assembled by dithioethers ArS(CH2)mSAr (Ar = Ph, p-Tol; m = 3, 5): effect of the spacer length, aryl group, and metal-to-ligand ratio on the dimensionality, cluster nuclearity, and the luminescence properties of the metal-organic frameworks. Inorg. Chem. 2012, 51, 9917–9934. doi: 10.1021/ic301385u
-
[14]
Shi, X. X.; Fan, Y.; Xu, J. N.; Qi, H.; Chai, J.; Sun. J.; Jin, H. Q.; Chen, X. D.; Zhang, P.; Wang, L. Layer-structured lanthanide coordination polymers constructed from 3, 5-bis(3, 5-dicarboxylphenyl)-pyridine ligand as fluorescent probe for nitroaromatics and metal ions. Inorg. Chim. Acta 2018, 483, 473–479. doi: 10.1016/j.ica.2018.08.050
-
[15]
Wang, S. J.; Wu, H. L.; You, L. X.; Xiong, G.; He, Y. K.; Ding, F.; Sun, Y. G. Synthesis, structure and photoluminescence of 3D lanthanide coordination polymers based on 2-(3, 5-dicarboxybenzyloxy) benzoic acid. Inorg. Chim. Acta 2019, 485, 49–53. doi: 10.1016/j.ica.2018.09.083
-
[16]
Song, J.; Hu, H. H.; Shi, J.; Ji, J. W.; Lu, J. F.; Ge, H. G. Effect of pH/auxiliary ligand on the structures of coordination compounds based on a novol ligand 2,6-bis(pyrazin-2-yl)pyridine-4-carboxylate. Chin. J. Struct. Chem. 2017, 36, 2087–2098.
-
[17]
Sheldrick, G. M. SHELXL-97, Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.
-
[18]
Lahoud, M. G.; Frem, R. G.; Marques, L. F.; Arroyos, G.; Brandão, P.; Ferreira, R. S; Carlos, L. D. A novel near monochromatic red emissive europium(Ⅲ) metal-organic framework based on 1, 2, 4, 5-benzenetetracarboxylate: from synthesis to photoluminescence studies. J. Solid State Chem. 2017, 253, 176–183. doi: 10.1016/j.jssc.2017.05.041
-
[19]
Shen, M. L.; Wei, Z.; Xu, L.; Liu, B.; Jiao, H. A mixed matrix Eu-4, 4'-biphenyldicarboxylate coordination polymer film as a fluorescence turn-off sensor to aniline vapor. J. Solid State Chem. 2019, 269, 87–93. doi: 10.1016/j.jssc.2018.09.014
-
[20]
Regulacio, M. D.; Pablico, M. H.; Vasquez, J. A.; Myers, P. N.; Gentry, S.; Prushan, M.; Chang, S. T.; Stoll, S. L. Luminescence of Ln(Ⅲ) dithiocarbamate complexes (Ln = La, Pr, Sm, Eu, Gd, Tb, Dy). Inorg. Chem. 2008, 47, 1512–1523. doi: 10.1021/ic701974q
-
[1]
-
Table 1. Selected Bond Lengths (Å) and Bond Angles (°) for 1
Bond Dist. Bond Dist. Bond Dist. Eu(1)–O(3) 2.318(4) Eu(1)–O(1) 2.339(4) Eu(1)–O(4)a 2.342(5) Eu(1)–O(2)b 2.410(4) Eu(1)–O(7) 2.418(5) Eu(1)–O(5)b 2.421(4) Eu(1)–O(6) 2.445(5) Eu(1)–O(5) 2.540(4) Angle (°) Angle (°) Angle (°) Eu(1)–Eu(1)b 3.9949(9) O(3)–Eu(1)–O(1) 149.98(17) O(3)–Eu(1)–O(4)a 78.93(17) O(1)–Eu(1)–O(4)a 75.30(17) O(3)–Eu(1)–O(2)b 73.74(16) O(1)–Eu(1)–O(2)b 136.14(16) O(4)a–Eu(1)–O(2)b 142.32(16) O(3)–Eu(1)–O(7) 78.76(17) O(1)–Eu(1)–O(7) 83.83(18) O(4)a–Eu(1)–O(7) 84.9(2) O(2)b–Eu(1)–O(7) 113.93(18) O(3)–Eu(1)–O(5)b 129.85(16) O(1)–Eu(1)–O(5)b 71.08(17) O(4)a–Eu(1)–O(5)b 145.30(16) O(2)b–Eu(1)–O(5)b 71.78(15) O(7)–Eu(1)–O(5)b 83.20(17) O(3)–Eu(1)–O(6) 83.77(17) O(1)–Eu(1)–O(6) 102.73(19) O(4)a–Eu(1)–O(6) 72.68(17) O(2)b–Eu(1)–O(6) 78.95(17) O(7)–Eu(1)–O(6) 153.86(18) O(5)b–Eu(1)–O(6) 122.92(15) O(3)–Eu(1)–O(5) 127.95(15) O(1)–Eu(1)–O(5) 74.97(16) O(4)a–Eu(1)–O(5) 106.67(17) O(2)b–Eu(1)–O(5) 72.41(15) O(7)–Eu(1)–O(5) 151.96(16) O(5)b–Eu(1)–O(5) 72.77(15) O(6)–Eu(1)–O(5) 51.81(14) O(3)–Eu(1)–Eu(1)b 141.21(12) O(1)–Eu(1)–Eu(1)b 68.81(12) O(4)a–Eu(1)–Eu(1)b 132.90(13) O(2)b–Eu(1)–Eu(1)b 67.57(10) O(7)–Eu(1)–Eu(1)b 119.31(13) O(5)b–Eu(1)–Eu(1)b 37.40(10) O(6)–Eu(1)–Eu(1)b 86.34(11) O(5)–Eu(1)–Eu(1)b 35.37(9) Table 2. Selected Bond Lengths (Å) and Bond Angles (°) for 2
Bond Dist. Bond Dist. Bond Dist. Dy(1)–O(1) 2.272(3) Dy(1)–O(3) 2.304(3) Dy(1)–O(2)a 2.319(3) Dy(1)–O(7) 2.361(3) Dy(1)–O(4)b 2.374(3) Dy(1)–O(6)b 2.380(3) Dy(1)–O(5) 2.401(3) Dy(1)–O(6) 2.512(3) Dy(1)–C(29) 2.823(4) Dy(1)–Dy(1)b 3.9500(5) Angle (°) Angle (°) Angle (°) O(1)–Dy(1)–O(3) 149.17(11) O(1)–Dy(1)–O(2)a 78.19(12) O(3)–Dy(1)–O(2)a 75.30(11) O(1)–Dy(1)–O(7) 78.12(12) O(3)–Dy(1)–O(7) 84.27(13) O(2)a–Dy(1)–O(7) 85.30(14) O(1)–Dy(1)–O(4)b 73.79(11) O(3)–Dy(1)–O(4)b 136.85(11) O(2)a–Dy(1)–O(4)b 142.18(11) O(7)–Dy(1)–O(4)b 112.63(13) O(1)–Dy(1)–O(6)b 129.82(11) O(3)–Dy(1)–O(6)b 71.38(11) O(2)a–Dy(1)–O(6)b 145.38(11) O(7)–Dy(1)–O(6)b 82.36(12) O(4)b–Dy(1)–O(6)b 72.07(11) O(1)–Dy(1)–O(5) 84.09(12) O(3)–Dy(1)–O(5) 102.63(13) O(2)a–Dy(1)–O(5) 72.88(11) O(7)–Dy(1)–O(5) 154.27(12) O(4)b–Dy(1)–O(5) 79.37(11) O(3)–Dy(1)–O(6) 75.15(11) O(2)a–Dy(1)–O(6) 107.94(12) O(7)–Dy(1)–O(6) 151.32(11) O(4)b–Dy(1)–O(6) 72.56(11) O(6)b–Dy(1)–O(6) 72.35(11) O(5)–Dy(1)–O(6) 52.58(10) O(1)–Dy(1)–C(29) 105.16(12) O(3)–Dy(1)–C(29) 91.64(13) O(2)a–Dy(1)–C(29) 92.79(12) O(7)–Dy(1)–C(29) 175.81(13) O(4)b–Dy(1)–C(29) 71.07(12) O(6)b–Dy(1)–C(29) 97.23(12) O(5)–Dy(1)–C(29) 26.38(11) O(6)–Dy(1)–C(29) 26.59(11) O(1)–Dy(1)–Dy(1)b 141.64(8) O(3)–Dy(1)–Dy(1)b 69.18(8) O(2)a–Dy(1)–Dy(1)b 133.77(9) O(7)–Dy(1)–Dy(1)b 118.55(9) O(4)b–Dy(1)–Dy(1)b 67.90(7) O(6)b–Dy(1)–Dy(1)b 37.31(7) O(5)–Dy(1)–Dy(1)b 86.84(7) O(6)–Dy(1)–Dy(1)b 35.04(7) Table 3. Selected Bond Lengths (Å) and Bond Angles (°) for 3
Bond Dist. Bond Dist. Bond Dist. Tb(1)–O(3) 2.289(3) Tb(1)–O(1) 2.311(3) Tb(1)–O(4)a 2.324(3) Tb(1)–O(7) 2.369(3) Tb(1)–O(2)b 2.385(3) Tb(1)–O(5) 2.388(3) Tb(1)–O(6)b 2.412(3) Tb(1)–O(5)b 2.526(3) Tb(1)–C(29)b 2.823(4) Tb(1)–Tb(1)b 3.9627(5) Angle (°) Angle (°) Angle (°) O(3)–Tb(1)–O(1) 149.28(10) O(3)–Tb(1)–O(4)a 78.32(10) O(1)–Tb(1)–O(4)a 75.18(10) O(3)–Tb(1)–O(7) 78.36(10) O(1)–Tb(1)–O(7) 83.98(11) O(4)a–Tb(1)–O(7) 84.74(12) O(3)–Tb(1)–O(2)b 73.70(9) O(1)–Tb(1)–O(2)b 136.86(9) O(4)a–Tb(1)–O(2)b 142.15(10) O(3)–Tb(1)–O(5) 129.78(10) O(1)–Tb(1)–O(5) 71.48(10) O(4)a–Tb(1)–O(5) 145.35(9) O(7)–Tb(1)–O(5) 82.69(11) O(2)b–Tb(1)–O(5) 72.11(9) O(3)–Tb(1)–O(6)b 83.63(10) O(1)–Tb(1)–O(6)b 102.94(11) O(4)a–Tb(1)–O(6)b 73.01(11) O(7)–Tb(1)–O(6)b 153.80(11) O(2)b–Tb(1)–O(6)b 78.96(10) O(5)–Tb(1)–O(6)b 123.50(9) O(3)–Tb(1)–O(5)b 128.52(9) O(1)–Tb(1)–O(5)b 75.15(10) O(4)a–Tb(1)–O(5) 107.78(10) O(7)–Tb(1)–O(5)b 151.54(10) O(2)b–Tb(1)–O(5)b 72.49(9) O(5)–Tb(1)–O(5)b 72.54(10) O(6)b–Tb(1)–O(5)b 52.63(9) O(3)–Tb(1)–C(29)b 104.64(11) O(1)–Tb(1)–C(29)b 91.98(11) O(4)a–Tb(1)–C(29)b 92.82(11) O(7)–Tb(1)–C(29)b 175.70(11) O(2)b–Tb(1)–C(29)b 70.67(11) O(5)–Tb(1)–C(29)b 97.45(10) O(6)b–Tb(1)–C(29)b 26.31(10) O(5)b–Tb(1)–C(29)b 26.74(10) O(3)–Tb(1)–Tb(1)b 141.49(7) O(1)–Tb(1)–Tb(1)b 69.22(7) O(4)a–Tb(1)–Tb(1)b 133.66(8) O(7)–Tb(1)–Tb(1)b 118.93(8) O(2)b–Tb(1)–Tb(1)b 67.86(6) O(5)–Tb(1)–Tb(1)b 37.45(7) O(6)b–Tb(1)–Tb(1)b 86.89(7) O(5)b–Tb(1)–Tb(1)a 35.09(6) C(29)b–Tb(1)–Tb(1)b 60.59(8) Symmetry transformations for 1: a: –x, –y+1, –z+1; b: –x, –y, –z+1; c: –x+1, –y, –z+1; 2: a: –x, –y, –z+2; b: –x, –y+1,
–z+2; c: –x–1, –y+1, –z+2; 3: a: –x, –y, –z+2; b: –x, –y+1, –z+2; c: –x+1, –y+1, –z+2 -

计量
- PDF下载量: 2
- 文章访问数: 564
- HTML全文浏览量: 18