Copper-Catalyzed Hydroxytrifluoromethylthiolation of Arylpropynones

Juanjuan Hu Yangen Huang Xiuhua Xu Fengling Qing

Citation:  Hu Juanjuan, Huang Yangen, Xu Xiuhua, Qing Fengling. Copper-Catalyzed Hydroxytrifluoromethylthiolation of Arylpropynones[J]. Chinese Journal of Organic Chemistry, 2019, 39(1): 177-182. doi: 10.6023/cjoc201808041 shu

铜催化的芳基炔酮的羟化三氟甲硫基化反应

    通讯作者: 卿凤翎, flq@mai.sioc.ac.cn
  • 基金项目:

    中国科学院战略性先导科技专项 XDB20000000

    国家自然科学基金 21421002

    国家自然科学基金 21332010

    中国科学院青年创新促进会 2016234

    国家自然科学基金(Nos.21332010,21421002)、中国科学院战略性先导科技专项(No.XDB20000000)和中国科学院青年创新促进会(No.2016234)资助项目

摘要: 近年来通过双官能团化的策略来制备含氟化合物已经成为氟化学研究的热点.报道了一例铜催化的芳基炔酮的羟化-三氟甲硫基化反应来合成相应的含三氟甲硫基的烯醇.铜盐和溶剂对于该反应产率的影响非常关键.在最优条件下,一系列含三氟甲硫基的烯醇以中等到良好的产率被制备出来,并且各种官能团能够在该反应中很好地兼容.

English

  • The incorporation of fluorine-containing groups into organic compounds can substantially change the chemical, physical, and biological properties.[1] Among various fluorine-containing groups, the trifluoromethylthio group (CF3S) has recently experienced a strong acceleration of interest because of its remarkable properties, in particular the strong electron-withdrawing effect and extremely high lipophilicity.[2] Consequently, the development of new trifluoromethylthiolating reagents and new trifluoromethylthiolation reactions has provided sought-after strategies for the preparation of SCF3-containing compounds.[3]

    Recently, difunctionalization reactions have become one of the most powerful strategies for the preparation of fluo- rinated compounds with simultaneous introduction of a fluorine or fluoroalkyl group with another functional group into organic molecules. This strategy has been widely applied in the synthesis of SCF3-containing compounds.[4~9] For example, a series of trifluoromethylthiolated alkenes have been prepared by difunctionalization of alkynes. Cao and co-workers reported the anti-Markovnikov- and Markovnikov-selective hydrotrifluoromethylthiolation of terminal alkynes with AgSCF3.[5] Recently, Liu[6a] and our group[6b] respectively disclosed the tandem trifluoromethylthiolation/aryl migration of aryl propynyl ethers or aryl alkynoates for the preparation of corresponding trifluoromethylthiolated alkenes. The stereoselective bis-trifluoro- methylthiolation of alkynes was reported by Tlili and Billard[7a] as well as by our group.[7b] Very recently, Yi and Zhang et al.[8] developed a chlorotrifluoromethylthiolation of alkynes using CF3SO2Cl as a bifunctionalization reagent.

    Oxytrifluoromethylthiolation of alkynes is a useful bifunctionalization reaction because O-containing groups (OSO2R, OCOR, OH, etc.) could be readily transformed to other functional groups. The Billard group[9a] first reported the oxytrifluoromethylthiolation of alkynes with an electrophilic trifluoromethylthiolating reagent under BF3•Et2O activation (Scheme 1a). Recently, Zhao et al.[9b] disclosed a selenide-catalyzed regio- and stereo-selective difunctionalization of alkynes to afford trifluoromethylthiolated alkenyl triflates (Scheme 1b). However, these electrophilic processes are limited to electron-rich alkynes. To the best of our knowledge, the oxytrifluoromethylthiolation of alkynes bearing electron-withdrawing substituents remains underexplored. To extend the substrate scope of oxytrifluoromethylthiolation, and as part of our continued interest in the difunctionalization reactions, [4b, m, 6b, 7b, 10] herein we disclose a copper-catalyzed oxidative hydroxytrifluoromethylthiolation of arylpropynones with AgSCF3 (Scheme 1c).

    Scheme 1

    Scheme 1.  Oxytrifluoromethylthiolation of alkynes

    Our initial attempt began by employing 4-phenylbut- 3-yn-2-one (1a) as the model substrate with AgSCF3 and H2O as the SCF3 and OH sources, respectively (Table 1). However, the reaction in the presence of (NH4)2S2O8 in MeCN could not yield the desired trifluoromethylthiolated enol 2a (Entry 1). To our delight, 2a was formed in 32% yield when catalytic Cu(OAc)2 was added to the reaction mixture (Entry 2). The screening of oxidants demonstrated that original (NH4)2S2O8 was the best of choice (Entries 3~5). Subsequently, a series of Cu salts including CuCl2, CuF2, CuSO4, CuCl, Cu(OTf)2, Cu(TFA)2, and CuCN were investigated (Entries 6~12), but none of them gave better result. The addition of catalytic monodentate or bidentate ligand was found to be beneficial for the yield (Entries 13~19). Among the ligands L1~L7 tested, 4, 4'-dimethyl- 2, 2'-bipyridine (dmbpy, L3) was optimal, affording 2a in 46% yield (Entry 15). Finally, the effect of solvent on the reaction was examined. Switching MeCN to THF, DMF, or MeCN/H2O resulted in much lower yields (Entries 20~22). The use of HOAc or HCO2H as a co-solvent could sharply improve the yields (Entries 23 and 24), whereas slightly lower yield was obtained when the reaction was performed in MeCN/TFA (Entry 25).

    Table 1

    Table 1.  Optimization of reaction conditions a
    下载: 导出CSV
    Entry Oxidant Additive Solvent Yieldb/%
    1 (NH4)2S2O8 MeCN 0
    2 (NH4)2S2O8 Cu(OAc)2 MeCN 32
    3 Na2S2O8 Cu(OAc)2 MeCN 29
    4 K2S2O8 Cu(OAc)2 MeCN 22
    5 TBHP Cu(OAc)2 MeCN Trace
    6 (NH4)2S2O8 CuCl2 MeCN 24
    7 (NH4)2S2O8 CuF2 MeCN 27
    8 (NH4)2S2O8 CuSO4 MeCN 15
    9 (NH4)2S2O8 Cu(OTf)2 MeCN 19
    10 (NH4)2S2O8 Cu(TFA)2 MeCN 11
    11 (NH4)2S2O8 CuCI MeCN 24
    12 (NH4)2S2O8 CuCN MeCN 19
    13 (NH4)2S2O8 Cu(OAc)2/L1 MeCN 38
    14 (NH4)2S2O8 Cu(OAc)2/L2 MeCN 35
    15 (NH4)2S2O8 Cu(OAc)2/L3 MeCN 46
    16 (NH4)2S2O8 Cu(OAc)2/L4 MeCN 41
    17 (NH4)2S2O8 Cu(OAc)2/L5 MeCN 33
    18 (NH4)2S2O8 Cu(OAc)2/L6 MeCN 40
    19 (NH4)2S2O8 Cu(OAc)2/L7 MeCN 34
    20 (NH4)2S2O8 Cu(OAc)2/L3 THF 13
    21 (NH4)2S2O8 Cu(OAc)2/L3 DMF 19
    22c (NH4)2S2O8 Cu(OAc)2/L3 MeCN/H2O 8
    23c (NH4)2S2O8 Cu(OAc)2/L3 MeCN/HOAc 68
    24c (NH4)2S2O8 Cu(OAc)2/L3 MeCN/HCO2H 89
    25c (NH4)2S2O8 Cu(OAc)2/L3 MeCN/TFA 35
    a Reaction conditions: 1a (0.1 mmol), AgSCF3 (0.2 mmol), H2O (0.3 mmol), oxidant (0.2 mmol), additive (0.02 mmol), solvent (2.0 mL), under N2, 70 ℃, 3 h. b Yields determined by 19F NMR spectroscopy using trifluoromethybenzene as an internal standard. c MeCN/co-solvent (1.0 mL/1.0 mL).

    With the optimized reaction conditions in hand (Table 1, Entry 19), the scope and limitation of hydroxytrifluoromethylthiolation of arylpropynones were studied. As shown in Table 2, a series of 4-arylbut-3-yn-2-ones (1a~1o) were converted to the corresponding trifluoromethylthiolated enols in moderate to high yields. Notably, in all cases, traces amounts of trifluoromethylthiolated 1, 3-diketones could be detected. This reaction exhibited good functional group compatibility, and different functional groups such as methoxy, fluoro, chloro, nitro, cyano, and trifluoromethyl were well tolerated. Furthermore, the electronic and steric effect of substituent groups exerted a clear influence on this transformation. In general, ortho-substituted (1k) and meta-substituted (1c) substrates distinctly affected the yields, and substrates with electron-deficient moieties (1n, 1o) gave much lower yields than those with electron-rich moieties (1b, 1f). Gratifyingly, this transformation proceeded smoothly for the substrates with a naphthyl group (1m) or a heterocyclic group (2-thienyl, 1p). The final concern was that 1-phenylpent-1-yn-3-one (1q) also showed good compatibility in this reaction system. Notably, when diaryl propynones (R2=aryl) were subjected to the standard conditions, cascade trifluoromethylthiolation and cyclization happened affording trifluoromethylthiolated indenones as the major products.[11i]

    Table 2

    Table 2.  Hydroxytrifluoromethylthiolation of arylpropynones a
    下载: 导出CSV
    a Reaction conditions: 1 (0.5 mmol), AgSCF3 (1.0 mmol), H2O (1.5 mmol), (NH4)2S2O8 (1.0 mmol), Cu(OAc)2 (0.1 mmol), L3 (0.1 mmol), MeCN/ HCO2H (5.0 mL/5.0 mL), under N2, 70 ℃, 3 h, isolated yields.

    On the basis of previous reports, a plausible reaction mechanism was proposed (Scheme 2). Initially, AgSCF3 is oxidized by (NH4)2S2O8 to furnish the SCF3 radical.[5, 11] Then, the addition of SCF3 radical to arylpropynones generates radical intermediate A, which is then oxidized to cation intermediate B by Cu/(NH4)2S2O8 (path A). Finally, the attack of cation B with H2O furnishes the desired product 2. However, an alternative pathway involving the formation of Cu-complex C[12] can not be excluded (path B).

    Scheme 2

    Scheme 2.  Proposed reaction mechanism

    In conclusion, we have developed a copper-catalyzed hydroxytrifluoromethylthiolation of arylpropynones with AgSCF3 and H2O as the SCF3 and OH sources, respectively. This work represents the first example of oxytrifluoromethylthiolation of alkynes bearing electron-withdrawing substituents. A series of trifluoromethylthiolated enols were obtained in moderate to high yields. We believe that this protocol will find applications in the preparation of useful building blocks and bio-relevant molecules.

    1H NMR and 19F NMR (CFCl3 as outside standard and low field is positive) spectra were recorded on a Bruker AM 400 spectrometer. 13C NMR spectra were recorded on a Bruker AM 400 spectrometer. High resolution mass spectra (HRMS) were performed using a GC/MS TOF high-resolution mass spectrometer equipped with a liquid chromatography system. IR spectra were recorded on a Thermo Scientific Nicolet 380 FT-IR spectrometer.

    A mixture of arylpropynone 1 (0.50 mmol), AgSCF3 (208.9 mg, 1.0 mmol), H2O (27 μL, 1.5 mmol), (NH4)2- S2O8 (228.2 mg, 1.0 mmol), Cu(OAc)2 (18.2 mg, 0.1 mmol), and 4, 4'-dimethyl-2, 2'-bipyridine (18.4 mg, 0.1 mmol) was added tube that was sealed with a septum. The mixture was evacuated and backfilled with nitrogen three times. MeCN (5.0 mL) and HCO2H (5.0 mL) were added to the tube. Then, the tube was stirred at 70 ℃ for 3 h. After the reaction was complete, saturated NH4Cl solution was added. The resulting mixture was extracted with EtOAc for three times. The combined organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give product 2.

    (E)-4-Hydroxy-4-phenyl-3-(trifluoromethylthio)but-3-en-2-one (2a)[13]: yellow oil, 102.7 mg, 78% yield. 1H NMR (400 MHz, CDCl3) δ: 7.56~7.51 (m, 2H), 7.44~7.38 (m, 1H), 7.38~7.32 (m, 2H), 2.48 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 201.7, 195.0, 135.7, 127.9, 131.3, 129.1 (q, , J=312.1 Hz), 128.7, 95.4, 25.2; 19F NMR (376 MHz, CDCl3) δ: -45.85 (s, 3F).

    (E)-4-Hydroxy-4-p-tolyl-3-(trifluoromethylthio)but-3-en-2-one (2b): yellow oil, 99.2 mg, 72% yield. 1H NMR (400 MHz, CDCl3) δ: 7.48 (d, J=8.2 Hz, 2H), 7.16 (d, J=7.9 Hz, 2H), 2.48 (s, 3H), 2.33 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 200.6, 193.7, 141.0, 131.8, 128.1 (q, J=312.1 Hz), 127.9, 127.6, 94.0, 24.1, 20.5; 19F NMR (376 MHz, CDCl3) δ: -45.89 (s, 3F); IR (film) ν: 3678, 2933, 1609, 1397, 1100, 825, 750, 565 cm-1; MS (ESI) m/z: 277 [M+H]+; HRMS (ESI-TOF) calcd for C12H12F3O2S [M+H]+: 277.0505, found 277.0506.

    (E)-4-Hydroxy-4-m-tolyl-3-(trifluoromethylthio)but-3-en-2-one (2c): yellow oil, 61.0 mg, 44% yield. 1H NMR (400 MHz, CDCl3) δ: 7.30 (s, 2H), 7.19~7.18 (m, 2H), 2.44 (s, 3H), 2.27 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 200.6, 194.2, 136.7, 134.6, 131.0, 128.2 (q, J=312.1 Hz), 128.1, 126.7, 124.8, 94.3, 24.2, 20.3; 19F NMR (376 MHz, CDCl3) δ: -45.84 (s, 3F); IR (film) ν: 3661, 2987, 1695, 1409, 1107, 738 cm-1; MS (ESI) m/z: 277 [M+H]+; HRMS (ESI-TOF) calcd for C12H12F3O2S [M+H]+: 277.0505, found 277.0503.

    (E)-4-(4-Ethylphenyl)-4-hydroxy-3-(trifluoromethylthio)- but-3-en-2-one (2d): yellow oil, 85.9 mg, 59% yield. 1H NMR (400 MHz, CDCl3) δ: 7.51 (d, J=8.2 Hz, 2H), 7.18 (d, J=8.2 Hz, 2H), 2.63 (q, J=7.6 Hz, 2H), 2.49 (s, 3H), 1.19 (t, J=7.6 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ: 201.7, 194.6, 148.2, 133.0, 129.2 (q, J=312.1 Hz), 129.1, 127.4, 95.1, 28.9, 25.3, 15.1; 19F NMR (376 MHz, CDCl3) δ: -45.87 (s, 3F); IR (film) ν: 3676, 2969, 1609, 1397, 1102, 1018, 838, 751 cm-1; MS (ESI) m/z: 291 [M+H]+; HRMS (ESI-TOF) calcd for C13H14F3O2S [M+H]+: 291.0661, found 291.0662.

    (E)-4-(4-Butylphenyl)-4-hydroxy-3-(trifluoromethylthio)- but-3-en-2-one (2e): yellow oil, 83.2 mg, 52% yield. 1H NMR (400 MHz, CDCl3) δ: 7.50 (d, J=8.2 Hz, 2H), 7.16 (d, J=7.9 Hz, 2H), 2.58 (t, J=8.0 Hz, 2H), 2.48 (s, 3H), 1.57~1.51 (m, 2H), 1.31~1.28 (m, 2H), 0.85 (t, J=7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ: 200.6, 193.6, 145.9, 131.9, 128.2 (q, J=312.1 Hz), 128.0, 126.9, 94.0, 34.6, 32.2, 24.3, 21.3, 12.9; 19F NMR (376MHz, CDCl3) δ: -45.87 (s, 3F); IR (film) ν: 3673, 2960, 1681, 1603, 1403, 1101, 747 cm-1; MS (ESI) m/z: 319 [M+H]+; HRMS (ESI-TOF) calcd for C15H18F3O2S [M+H]+: 319.0974, found 319.0973.

    (E)-4-Hydroxy-4-(4-methoxyphenyl)-3-(trifluoromethyl-thio)but-3-en-2-one (2f): yellow oil, 96.9 mg, 66% yield. 1H NMR (400 MHz, CDCl3) δ: 7.65 (d, J=8.9 Hz, 2H), 6.86 (d, J=8.9 Hz, 2H), 3.80 (s, 3H), 2.49 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 200.4, 192.5, 161.3, 130.4, 128.2 (q, J=313.1 Hz), 126.8, 112.2, 93.5, 54.4, 24.3; 19F NMR (376 MHz, CDCl3) δ: -45.97 (s, 3F); IR (film) ν: 3668, 2965, 1602, 1253, 1100, 837, 752 cm-1; MS (ESI) m/z: 293 [M+H]+; HRMS (ESI-TOF) calcd for C12H12F3O3S [M+H]+: 293.0454, found 293.0455.

    (E)-4-(4-Fluorophenyl)-4-hydroxy-3-(trifluoromethyl-thio)but-3-en-2-one (2g): yellow oil, 71.7 mg, 51% yield. 1H NMR (400 MHz, CDCl3) δ: 7.62~7.58 (m, 2H), 7.05 (t, J=8.6 Hz, 2H), 2.49 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 200.5, 192.8, 163.4 (d, J=251.5 Hz), 130.8 (d, J=4.0 Hz), 130.3 (d, J=9.1 Hz), 128.0 (q, J=312.1 Hz), 114.1 (d, J=22.2 Hz), 94.1, 24.1; 19F NMR (376 MHz, CDCl3) δ: -45.91 (s, 3F), -107.30 (s, 1F); IR (film) ν: 3667, 2984, 1603, 1406, 1104, 841, 748 cm-1; MS (ESI) m/z: 281 [M+H]+; HRMS (ESI-TOF) calcd for C11H9F4O2S [M+H]+: 281.0254, found 281.0254.

    (E)-4-(3-Fluorophenyl)-4-hydroxy-3-(trifluoromethyl-thio)but-3-en-2-one (2h): yellow oil, 74.5 mg, 53% yield. 1H NMR (400 MHz, CDCl3) δ: 7.32~7.31 (m, 2H), 7.25~7.22 (m, 1H), 7.13~7.09 (m, 1H), 2.48 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 201.5, 193.9, 162.0 (d, J=248.5 Hz), 137.7 (d, J=7.1 Hz), 129.6 (d, J=8.1 Hz), 129.0 (q, J=312.1 Hz), 124.4 (d, J=3.0 Hz), 118.2 (d, J=21.2 Hz), 115.8 (d, J=23.2 Hz), 95.5, 25.0; 19F NMR (376 MHz, CDCl3) δ: -45.80 (s, 3F), -112.27 (s, 1F); IR (film) ν: 3670, 2983, 1610, 1435, 1098, 877, 749 cm-1; MS (ESI) m/z: 281 [M+H]+; HRMS (ESI-TOF) calcd for C11H9F4O2S [M+H]+: 281.0254, found 281.0256.

    (E)-4-(4-Chlorophenyl)-4-hydroxy-3-(trifluoromethyl-thio)but-3-en-2-one (2i): yellow oil, 88.7 mg, 60% yield. 1H NMR (400 MHz, CDCl3) δ: 7.50 (d, J=8.6 Hz, 2H), 7.33 (d, J=8.6 Hz, 2H), 2.48 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 200.5, 192.9, 136.6, 133.0, 129.2, 128.0 (s, J=312.1 Hz), 127.2, 94.2, 24.1; 19F NMR (376 MHz, CDCl3) δ: -45.84 (s, 3F); IR (film) ν: 3663, 2978, 1607, 1397, 1092, 1013, 835, 750 cm-1; MS (ESI): m/z 297 [M+H]+; HRMS (ESI-TOF) calcd for C11H9ClF3O2S [M+H]+: 296.9958, found 296.9956.

    (E)-4-(3-Chlorophenyl)-4-hydroxy-3-(trifluoromethyl-thio) but-3-en-2-one (2j): yellow oil, 81.4 mg, 55% yield. 1H NMR (400 MHz, CDCl3) δ: 7.51 (t, J=1.9 Hz, 1H), 7.43~7.35 (m, 2H), 7.29 (t, J=7.9 Hz, 1H), 2.48 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 201.5, 193.9, 137.4, 134.0, 131.2, 129.3, 129.0 (q, J=312.1 Hz), 128.6, 126.8, 95.5, 25.0; 19F NMR (376 MHz, CDCl3) δ: -45.75 (s, 3F); IR (film) ν: 3665, 2980, 1514, 1397, 1104, 888, 738, 552 cm-1; MS (ESI) m/z: 297 [M+H]+; HRMS (ESI-TOF) calcd for C11H9ClF3O2S [M+H]+: 296.9958, found 296.9960.

    (E)-4-(2-Chlorophenyl)-4-hydroxy-3-(trifluoromethyl-thio)but-3-en-2-one (2k): yellow oil, 55.2 mg, 37% yield. 1H NMR (400 MHz, CDCl3) δ: 7.34~7.23 (m, 4H), 2.47 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 199.7, 195.2, 135.9, 131.2, 130.8, 129.4, 129.2 (q, J=312.1 Hz), 128.8, 126.6, 97.8, 24.5; 19F NMR (376 MHz, CDCl3) δ: -45.31 (s, 3F); IR (film) ν: 3673, 2990, 1588, 1400, 1104, 753 cm-1; MS (ESI) m/z: 297 [M+H]+; HRMS (ESI-TOF) calcd for C11H9ClF3O2S [M+H]+: 296.9958, found 296.9957.

    (E)-4-Hydroxy-4-(4-(trifluoromethyl)phenyl)-3-(trifluo-romethylthio)but-3-en-2-one (2l): yellow oil, 68.0 mg, 41% yield. 1H NMR (400 MHz, CDCl3) δ: 7.66~7.61 (m, 4H), 2.52 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 200.6, 193.1, 138.1, 131.7 (q, J=33.3 Hz), 127.9 (q, J=312.1 Hz), 127.9, 124.0 (q, J=3.0 Hz), 122.6 (q, J=272.7 Hz), 94.7, 24.0; 19F NMR (376 MHz, CDCl3) δ: -45.72 (s, 3F), -63.05 (s, 3F); IR (film) ν: 3676, 2990, 2899, 1400, 1321, 1068, 889 cm-1; MS (ESI) m/z: 331 [M+H]+; HRMS (ESI-TOF) calcd for C12H9F6O2S [M+H]+: 331.0222, found 331.0221.

    (E)-4-Hydroxy-4-(naphthalen-1-yl)-3-(trifluoromethyl-thio)but-3-en-2-one (2m): yellow oil, 114.3 mg, 73% yield. 1H NMR (400 MHz, CDCl3) δ: 7.86 (d, J=8.1 Hz, 1H), 7.81~7.79 (m, 1H), 7.67~7.65 (m, 1H), 7.47~7.40 (m, 3H), 7.38~7.36 (m, 1H), 2.53 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 200.3, 195.7, 132.5, 132.2, 129.6, 128.6, 127.9 (q, J=312.1 Hz), 127.5, 126.1, 125.3, 125.0, 123.5, 123.4, 97.1, 24.2; 19F NMR (376 MHz, CDCl3) δ: -45.48 (s, 3F); IR (film) ν: 3676, 2990, 2905, 1515, 1403, 1116, 1061, 783 cm-1; MS (ESI) m/z: 313 [M+H]+; HRMS (ESI-TOF) calcd for C15H12F3O2S [M+H]+: 313.0505, found 313.0503.

    (E)-4-(1-Hydroxy-3-oxo-2-(trifluoromethylthio)but-1-enyl)benzonitrile (2n): yellow oil, 52.0 mg, 36% yield. 1H NMR (400 MHz, CDCl3) δ: 7.67 (d, J=8.4 Hz, 2H), 7.61 (d, J=8.4 Hz, 2H), 2.51 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 200.6, 192.8, 138.8, 130.8, 128.1, 127.8 (q, J=312.1 Hz), 116.9, 113.7, 94.7, 23.9; 19F NMR (376 MHz, CDCl3) δ: -45.68 (s, 3F); IR (film) ν: 3672, 2928, 2231, 1530, 1401, 1105, 840, 732 cm-1; MS (ESI) m/z: 288 [M+H]+; HRMS (ESI-TOF) calcd for C12H9F3NO2S [M+H]+: 288.0301, found 288.0298.

    (E)-4-Hydroxy-4-(4-nitrophenyl)-3-(trifluoromethylthio)-but-3-en-2-one (2o): yellow oil, 40.3 mg, 26% yield. 1H NMR (400 MHz, CDCl3) δ: 8.22 (d, J=8.2 Hz, 2H), 7.67 (d, J=7.9 Hz, 2H), 2.51 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 200.6, 192.7, 148.0, 140.6, 128.5, 127.8 (q, J=313.1 Hz), 122.2, 94.8, 23.9; 19F NMR (376 MHz, CDCl3) δ: -45.68 (s, 3F); IR (film) ν: 3673, 2996, 2899, 1527, 1401, 1107, 862, 832, 708 cm-1; MS (ESI) m/z: 308 [M+H]+; HRMS (ESI-TOF) calcd for C11H9F3NO4S [M+H]+: 308.0199, found 308.0199.

    (E)-4-Hydroxy-4-(thiophen-2-yl)-3-(trifluoromethylthio)-but-3-en-2-one (2p): yellow oil, 76.9 mg, 57% yield. 1H NMR (400 MHz, CDCl3) δ: 8.23 (dd, J=4.0, 1.3 Hz, 1H), 7.64 (dd, J=5.0, 1.3 Hz, 1H), 7.07 (dd, J=5.0, 4.0 Hz, 1H), 2.47 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 201.4, 183.9, 137.5, 136.6, 135.7, 129.1 (q, J=313.1 Hz), 127.6, 92.8, 25.2; 19F NMR (376 MHz, CDCl3) δ: -45.23 (s, 3F); IR (film) ν: 3674, 2993, 1513, 1408, 1096, 858, 718, 562 cm-1; MS (ESI): m/z 269 [M+H]+; HRMS (ESI- TOF) calcd for C9H8F3O2S2 [M+H]+: 268.9912, found 268.9910.

    (E)-1-Hydroxy-1-phenyl-2-(trifluoromethylthio)pent-1-en-3-one (2q): yellow oil, 84.6 mg, 61% yield. 1H NMR (400 MHz, CDCl3) δ: 7.57~7.50 (m, 2H), 7.41 (d, J=7.3 Hz, 1H), 7.37~7.33 (m, 2H), 2.97~2.83 (m, 2H), 1.15 (t, J=7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ: 204.5, 192.9, 134.5, 130.1, 128.0 (q, J=312.1 Hz), 127.7, 126.8, 93.8, 29.9, 8.1; 19F NMR (376 MHz, CDCl3) δ: -45.79 (s, 3F); IR (film) ν: 3673, 2984, 1530, 1397, 1100, 692, 543 cm-1; MS (ESI) m/z: 277 [M+H]+; HRMS (ESI-TOF) calcd for C12H12F3O2S [M+H]+: 277.0505, found 277.0507.

    Supporting Information  Preparation of substrates. 1H NMR, 13C NMR, and 19F NMR spectra for all new compounds. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.

    1. [1]

      (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
      (c) Cametti, M.; Crousse, B.; Metrangolo, P.; Milani, R.; Resnati, G. Chem. Soc. Rev. 2012, 41, 31.
      (d) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (e) Gouverneur, V.; Seppelt, K. Chem. Rev. 2015, 115, 563.
      (f) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceñ a, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
      (g) Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105(in Chinese).
      (荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105.)
      (h) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.

    2. [2]

      (a) Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Nikaitani, D.; Lien, E. J. J. Med. Chem. 1973, 16, 1207.
      (b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.

    3. [3]

      (a) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
      (b) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2415.
      (c) Shao, X.; Xu, C.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227.
      (d) Xu, H.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
      (e) Zhang, K.; Xu, X.-H.; Qing, F.-L. Chin. J. Org. Chem. 2015, 35, 556(in Chinese).
      (张珂, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.)
      (f) Chachignon, H.; Cahard, D. Chin. J. Chem. 2016, 34, 445.
      (g) Barata-Vallejo, S.; Bonesi, S.; Postigo, A. Org. Biomol. Chem. 2016, 14, 7150.
      (h) Zheng, H.; Huang, Y.; Weng, Z. Tetrahedron Lett. 2016, 57, 1397.

    4. [4]

      (a) Sheng, J.; Li, S.; Wu, J. Chem. Commun. 2014, 50, 578.
      (b) Zhang, K.; Liu, J.-B.; Qing, F.-L. Chem. Commun. 2014, 50, 14157.
      (c) Zhu, L.; Wang, G.; Guo, Q.; Xu, Z.; Zhang, D.; Wang, R. Org. Lett. 2014, 16, 5390.
      (d) Yang, T.; Lu, L.; Shen, Q. Chem. Commun. 2015, 51, 5479.
      (e) Chen, D.-Q.; Gao, P.; Zhou, P.-X.; Song, X.-R.; Qiu, Y.-F.; Liu, X.-Y.; Liang, Y. M. Chem. Commun. 2015, 51, 6637.
      (f) Fuentes, N.; Kong, W.; Fernández-Sánchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964.
      (g) Luo, J.; Zhu, Z.; Liu, Y.; Zhao, X. Org. Lett. 2015, 17, 3620.
      (h) Xu, C.; Shen, Q. Org. Lett. 2015, 17, 4561.
      (i) Liu, X.; An, R.; Zhang, X.; Luo, J.; Zhao, X. Angew. Chem., Int. Ed. 2016, 55, 5846.
      (j) Zhang, P.; Li, M.; Xue, X.-S.; Xu, C.; Zhao, Q.; Liu, Y.; Wang, H.; Guo, Y.; Lu, L.; Shen, Q. J. Org. Chem. 2016, 81, 7486.
      (k) Jin, D.-P.; Gao, P.; Chen, D.-Q.; Chen, S.; Wang, J.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2016, 18, 3486.
      (l) Luo, J.; Liu, Y.; Zhao, X. Org. Lett. 2017, 19, 3434.
      (m) Pan, S.; Huang, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2017, 19, 4624.
      (n) Liu, X.; Liang, Y.; Ji, J.; Luo, J.; Zhao, X. J. Am. Chem. Soc. 2018, 140, 4782.
      (o) Xiao, Z.; Liu, Y.; Zheng, L.; Liu, C.; Guo, Y.; Chen, Q.-Y. J. Org. Chem. 2018, 83, 5836.
      (p) Xi, C.-C.; Chen, Z.-M.; Zhang, S.-Y.; Tu, Y.-Q. Org. Lett. 2018, 20, 4227.

    5. [5]

      Wu, W.; Dai, W.; Ji, X.; Cao, S. Org. Lett. 2016, 18, 2918. doi: 10.1021/acs.orglett.6b01286

    6. [6]

      (a) Guo, C.-H.; Chen, D.-Q.; Chen, S.; Liu, X.-Y. Adv. Synth. Catal. 2017, 359, 2901.
      (b) Li, H.; Liu, S.; Huang, Y.; Xu, X.-H.; Qing, F.-L. Chem. Commun. 2017, 53, 10136.

    7. [7]

      (a) Tlili, A.; Alazet, S.; Glenadel, Q.; Billard, T. Chem.-Eur. J. 2016, 22, 10230.
      (b) Pan, S.; Li, H.; Huang, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2017, 19, 3247.

    8. [8]

      Jiang, L.; Ding, T.; Yi, W.-B.; Zeng, X.; Zhang, W. Org. Lett. 2018, 20, 2236. doi: 10.1021/acs.orglett.8b00581

    9. [9]

      (a) Ferry, A.; Billard, T.; Langlois, B. R.; Bacqué, E. Angew. Chem., Int. Ed. 2009, 48, 8551.
      (b) Wu, J.-J.; Xu, J.; Zhao, X. Chem.-Eur. J. 2016, 22, 15265.

    10. [10]

      (a) Yang, Y.; Jiang, X.-L.; Qing, F.-L. J. Org. Chem. 2012, 77, 7538.
      (b) Wu, X.; Chu, L.; Qing, F.-L. Angew. Chem. Int. Ed. 2013, 52, 2198.
      (c) Jiang, X.-Y.; Qing, F.-L. Angew. Chem. Int. Ed. 2013, 52, 14177.
      (d) Yu, W.; Xu, X.-H.; Qing, F.-L. Adv. Synth. Catal. 2015, 357, 2039.
      (e) Yang, B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 1906.
      (f) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing, F.-L. Angew. Chem., Int. Ed. 2016, 55, 1479.
      (g) Yang, B.; Xu, X.-H.; Qing, F.-L. Chin. J. Chem. 2016, 34, 465.
      (h) Lin, Q.-Y.; Ran, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2016, 18, 2419.
      (i) Yu, W.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2016, 18, 5130.
      (j) Yang, B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2016, 18, 5956.
      (k) Yang, B.; Yu, D.; Xu, X.-H.; Qing, F.-L. ACS Catal. 2018, 8, 2839.
      (l) Ouyang, Y.; Xu, X.-H.; Qing, F.-L. Angew. Chem., Int. Ed. 2018, 57, 6926.

    11. [11]

      (a) Yin, F.; Wang, X.-S. Org. Lett. 2014, 16, 1128.
      (b) Guo, S.; Zhang, X.; Tang, P. Angew. Chem., Int. Ed. 2015, 54, 4065.
      (c) Wu, H.; Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J.-C.; Liu, C.; Chen, Q.-Y. Angew. Chem., Int. Ed. 2015, 54, 4070.
      (d) Qiu, Y.-F.; Zhu, X.-Y.; Li, Y.-X.; He, Y.-T.; Yang, F.; Wang, J.; Hua, H.-L.; Zheng, L.; Wang, L.-C.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2015, 17, 3694.
      (e) Zeng, Y.-F.; Tan, D.-H.; Chen, Y.; Lv, W.-X.; Liu, X.-G.; Li, Q.; Wang, H. Org. Chem. Front. 2015, 2, 1511.
      (f) Li, C.; Zhang, K.; Xu, X.-H.; Qing, F.-L. Tetrahedron Lett. 2015, 56, 6273.
      (g) Pan, S.; Huang, Y.; Qing, F. L. Chem. Asian J. 2016, 11, 2854.
      (h) Huang, F.-Q.; Wang, Y.-W.; Sun, J.-G.; Xie, J.; Qi, L.-W.; Zhang, B. RSC Adv. 2016, 6, 52710.
      (i) Song, Y.-K.; Qian, P.-C.; Chen, F.; Deng, C.-L.; Zhang, X.-G. Tetrahedron 2016, 72, 7589.
      (j) Ji, M. S.; Wu, Z.; Yu, J. J.; Wan, X. B.; Zhu, C. Adv. Synth. Catal. 2017, 359, 1959.
      (k) He, B.; Xiao, Z.; Wu, H.; Guo, Y.; Chen, Q.-Y.; Liu, C. RSC Adv. 2017, 7, 880.
      (l) Liu, K.; Jin, Q.; Chen, S.; Liu, P. N. RSC Adv. 2017, 7, 1546.
      (m) Li, M.; Petersen, J. L.; Hoover, J. M. Org. Lett. 2017, 19, 638.
      (n) Cheng, Z.-F.; Tao, T.-T.; Feng, Y.-S.; Tang, W.-K.; Xu, J.; Dai, J.-J.; Xu, H.-J. J. Org. Chem. 2018, 83, 499.

    12. [12]

      (a) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034.
      (b) Huang, L.; Zheng, S.-C.; Tan, B.; Liu, X.-Y. Chem.-Eur. J. 2015, 18, 6718.
      (c) Yu, L.-Z.; Wei, Y.; Shi, M. Chem. Commun. 2016, 52, 13163.
      (d) Cheng, C.; Liu, S.; Lu, D.; Zhu, G. Org. Lett. 2016, 18, 2852.

    13. [13]

      (a) Wu, W.; Zhang, X.; Liang, F.; Cao, S. Org. Biomol. Chem. 2015, 13, 6992.
      (b) Zhang, J.; Yang, J.-D.; Zheng, H.; Xue, X.-S.; Mayr, H.; Cheng, J.-P. Angew. Chem. Int. Ed. 2018, 57, 12690.

  • Scheme 1  Oxytrifluoromethylthiolation of alkynes

    Scheme 2  Proposed reaction mechanism

    Table 1.  Optimization of reaction conditions a

    Entry Oxidant Additive Solvent Yieldb/%
    1 (NH4)2S2O8 MeCN 0
    2 (NH4)2S2O8 Cu(OAc)2 MeCN 32
    3 Na2S2O8 Cu(OAc)2 MeCN 29
    4 K2S2O8 Cu(OAc)2 MeCN 22
    5 TBHP Cu(OAc)2 MeCN Trace
    6 (NH4)2S2O8 CuCl2 MeCN 24
    7 (NH4)2S2O8 CuF2 MeCN 27
    8 (NH4)2S2O8 CuSO4 MeCN 15
    9 (NH4)2S2O8 Cu(OTf)2 MeCN 19
    10 (NH4)2S2O8 Cu(TFA)2 MeCN 11
    11 (NH4)2S2O8 CuCI MeCN 24
    12 (NH4)2S2O8 CuCN MeCN 19
    13 (NH4)2S2O8 Cu(OAc)2/L1 MeCN 38
    14 (NH4)2S2O8 Cu(OAc)2/L2 MeCN 35
    15 (NH4)2S2O8 Cu(OAc)2/L3 MeCN 46
    16 (NH4)2S2O8 Cu(OAc)2/L4 MeCN 41
    17 (NH4)2S2O8 Cu(OAc)2/L5 MeCN 33
    18 (NH4)2S2O8 Cu(OAc)2/L6 MeCN 40
    19 (NH4)2S2O8 Cu(OAc)2/L7 MeCN 34
    20 (NH4)2S2O8 Cu(OAc)2/L3 THF 13
    21 (NH4)2S2O8 Cu(OAc)2/L3 DMF 19
    22c (NH4)2S2O8 Cu(OAc)2/L3 MeCN/H2O 8
    23c (NH4)2S2O8 Cu(OAc)2/L3 MeCN/HOAc 68
    24c (NH4)2S2O8 Cu(OAc)2/L3 MeCN/HCO2H 89
    25c (NH4)2S2O8 Cu(OAc)2/L3 MeCN/TFA 35
    a Reaction conditions: 1a (0.1 mmol), AgSCF3 (0.2 mmol), H2O (0.3 mmol), oxidant (0.2 mmol), additive (0.02 mmol), solvent (2.0 mL), under N2, 70 ℃, 3 h. b Yields determined by 19F NMR spectroscopy using trifluoromethybenzene as an internal standard. c MeCN/co-solvent (1.0 mL/1.0 mL).
    下载: 导出CSV

    Table 2.  Hydroxytrifluoromethylthiolation of arylpropynones a

    a Reaction conditions: 1 (0.5 mmol), AgSCF3 (1.0 mmol), H2O (1.5 mmol), (NH4)2S2O8 (1.0 mmol), Cu(OAc)2 (0.1 mmol), L3 (0.1 mmol), MeCN/ HCO2H (5.0 mL/5.0 mL), under N2, 70 ℃, 3 h, isolated yields.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  1129
  • HTML全文浏览量:  137
文章相关
  • 发布日期:  2019-01-25
  • 收稿日期:  2018-08-30
  • 修回日期:  2018-10-23
  • 网络出版日期:  2018-01-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章