基于行波技术的离子迁移率分离器研制

郭星 赵忠俊 代渐雄 贺飞耀 李宏 王佳宇 刘薇 王昕 张歆雪 杨燕婷 段忆翔

引用本文: 郭星, 赵忠俊, 代渐雄, 贺飞耀, 李宏, 王佳宇, 刘薇, 王昕, 张歆雪, 杨燕婷, 段忆翔. 基于行波技术的离子迁移率分离器研制[J]. 分析化学, 2021, 49(9): 1461-1469. doi: 10.19756/j.issn.0253-3820.210458 shu
Citation:  GUO Xing,  ZHAO Zhong-Jun,  DAI Jian-Xiong,  HE Fei-Yao,  LI Hong,  WANG Jia-Yu,  LIU Wei,  WANG Xin,  ZHANG Xin-Xue,  YANG Yan-Ting,  DUAN Yi-Xiang. Development of A Travelling Wave-based Ion Mobility Spectrometer[J]. Chinese Journal of Analytical Chemistry, 2021, 49(9): 1461-1469. doi: 10.19756/j.issn.0253-3820.210458 shu

基于行波技术的离子迁移率分离器研制

    通讯作者: 段忆翔,E-mail:yduan@scu.edu.cn
  • 基金项目:

    四川省重大科学仪器设备专项(No.2019ZDZX0036)和陕西省重点研究开发计划项目(No.2019ZDLSF01-03)资助。

摘要: 离子迁移谱(Ion mobility spectrometer,IMS)是一种重要的分子碰撞截面分析技术,漂移管是IMS中对样品离子有效分离的核心部件。本工作研制并表征了一种基于行波技术的离子迁移率分离器(Traveling wave ion mobility spectrometer,TWIMS),详细研究并讨论了行波电压幅值、行波移动速度、离子门脉冲宽度以及工作气压对仪器性能的影响。基于理论模拟对上述参数进行实验优化,当行波场电压幅值为50 V、行波场移动速度为162.5 m/s、离子门脉冲宽度为13 ms、工作气压为170 Pa时,此设备能以一种经济简便的方式获得与当前市售行波离子迁移-飞行时间质谱(Traveling wave ion mobilityspectrometer-Time of flight mass spectrometer,TWIMS-TOFMS)联用仪相媲美的迁移率分辨能力。此仪器对利血平的检出限为2.5 ng/mL,线性响应范围高于2个数量级(R2>0.999),性能优于传统IMS谱仪。TWIMS不仅可作为高性能IMS设备独立使用,而且有望与飞行时间质谱仪联用。

English


    1. [1]

      KARASEK FRANCIS W. Anal. Chem., 1974, 46(8):710A-720A.KARASEK FRANCIS W. Anal. Chem., 1974, 46(8):710A-720A.

    2. [2]

      SMITH D. J. Atmos. Terr. Phys., 1974, 36(4):717-718.SMITH D. J. Atmos. Terr. Phys., 1974, 36(4):717-718.

    3. [3]

      CUMERAS R, FIGUERAS E, DAVIS C E, BAUMBACH J I, GRACIA I. Analyst, 2015, 140(5):1376-1390.CUMERAS R, FIGUERAS E, DAVIS C E, BAUMBACH J I, GRACIA I. Analyst, 2015, 140(5):1376-1390.

    4. [4]

      CUMERAS R, FIGUERAS E, DAVIS C E, BAUMBACH J I, GRACIA I. Analyst, 2015, 140(5):1391-1410.CUMERAS R, FIGUERAS E, DAVIS C E, BAUMBACH J I, GRACIA I. Analyst, 2015, 140(5):1391-1410.

    5. [5]

      UETRECHT C, ROSE R J, VAN DUIJN E, LORENZEN K, HECK A J R. Chem. Soc. Rev., 2010, 39(5):1633-1655.UETRECHT C, ROSE R J, VAN DUIJN E, LORENZEN K, HECK A J R. Chem. Soc. Rev., 2010, 39(5):1633-1655.

    6. [6]

      KANU A B, GRIBB M M, HILL H H. Anal. Chem., 2008, 80(17):6610-6619.KANU A B, GRIBB M M, HILL H H. Anal. Chem., 2008, 80(17):6610-6619.

    7. [7]

      KIRK A T, GRUBE D, KOBELT T, WENDT C, ZIMMERMANN S. Anal. Chem., 2018, 90(9):5603-5611.KIRK A T, GRUBE D, KOBELT T, WENDT C, ZIMMERMANN S. Anal. Chem., 2018, 90(9):5603-5611.

    8. [8]

      LANGEJUERGEN J, ALLERS M, OERMANN J, KIRK A, ZIMMERMANN S. Anal. Chem., 2014, 86(23):11841-11846.LANGEJUERGEN J, ALLERS M, OERMANN J, KIRK A, ZIMMERMANN S. Anal. Chem., 2014, 86(23):11841-11846.

    9. [9]

      MILLER R A, NAZAROV E G, EICEMAN G A, THOMAS KING A. Sens. Actuators, A, 2001, 91(3):301-312.MILLER R A, NAZAROV E G, EICEMAN G A, THOMAS KING A. Sens. Actuators, A, 2001, 91(3):301-312.

    10. [10]

      ZALEWSKA A, PAWŁOWSKI W, TOMASZEWSKI W. Forensic Sci. Int., 2013, 226(1):168-172.ZALEWSKA A, PAWŁOWSKI W, TOMASZEWSKI W. Forensic Sci. Int., 2013, 226(1):168-172.

    11. [11]

      ZHANG X, IBRAHIM Y M, CHEN T C, KYLE J E, NORHEIM R V, MONROE M E, SMITH R D, BAKER S. Analyst, 2015, 140(20):6955-6963.ZHANG X, IBRAHIM Y M, CHEN T C, KYLE J E, NORHEIM R V, MONROE M E, SMITH R D, BAKER S. Analyst, 2015, 140(20):6955-6963.

    12. [12]

      ATTOUI M, DE LA MORA J F. J. Aerosol Sci., 2016, 100:91-96.ATTOUI M, DE LA MORA J F. J. Aerosol Sci., 2016, 100:91-96.

    13. [13]

      RATIU I A, BOCOS-BINTINTAN V, PATRUT A, MOLL V H, TURNER M, THOMAS C L P. Anal. Chim. Acta, 2017, 982:209-217.RATIU I A, BOCOS-BINTINTAN V, PATRUT A, MOLL V H, TURNER M, THOMAS C L P. Anal. Chim. Acta, 2017, 982:209-217.

    14. [14]

      XIE C, GU L, WU Q, LI L, WANG C, YU J, TANG K. Anal. Chem., 2021, 93(2):859-867.XIE C, GU L, WU Q, LI L, WANG C, YU J, TANG K. Anal. Chem., 2021, 93(2):859-867.

    15. [15]

      CAMPUZANO I D G, GILES K. TrAC-Trends Anal. Chem., 2019, 120:12.CAMPUZANO I D G, GILES K. TrAC-Trends Anal. Chem., 2019, 120:12.

    16. [16]

      KNUDSEN S B, CHRISTENSEN J H, TOMASI G. Chemom. Intell. Lab. Syst., 2021, 208:104201.KNUDSEN S B, CHRISTENSEN J H, TOMASI G. Chemom. Intell. Lab. Syst., 2021, 208:104201.

    17. [17]

      ROPARTZ D, FANUEL M, UJMA J, PALMER M, GILES K, ROGNIAUX H. Anal. Chem., 2019, 91(18):12030-12037.ROPARTZ D, FANUEL M, UJMA J, PALMER M, GILES K, ROGNIAUX H. Anal. Chem., 2019, 91(18):12030-12037.

    18. [18]

      GABELICA V, MARKLUND E. Curr. Opin. Chem. Biol., 2018, 42:51-59.GABELICA V, MARKLUND E. Curr. Opin. Chem. Biol., 2018, 42:51-59.

    19. [19]

      ROKUSHIKA S, HATANO H, BAIM M A, HILL H H. Anal. Chem., 1985, 57(9):1902-1907.ROKUSHIKA S, HATANO H, BAIM M A, HILL H H. Anal. Chem., 1985, 57(9):1902-1907.

    20. [20]

      SPANGLER G E. Anal. Chem., 1993, 65(21):3010-3014.SPANGLER G E. Anal. Chem., 1993, 65(21):3010-3014.

    21. [21]

      GILES K, PRINGLE S D, WILDGOOSE J L, RUOTOLO B H. Characterising a Travelling Wave-Based Ion Mobility Separator. 54th ASMS Conf. Seattle:American Society for Mass Spectrometry. 2006:248462.GILES K, PRINGLE S D, WILDGOOSE J L, RUOTOLO B H. Characterising a Travelling Wave-Based Ion Mobility Separator. 54th ASMS Conf. Seattle:American Society for Mass Spectrometry. 2006:248462.

    22. [22]

      RUOTOLO Brandon T, GILES K, HOYES J B, ROBINSON C V. 57th ASMS Conf. Philadelphia:American Society for Mass Spectrometry. 2009:252035.RUOTOLO Brandon T, GILES K, HOYES J B, ROBINSON C V. 57th ASMS Conf. Philadelphia:American Society for Mass Spectrometry. 2009:252035.

    23. [23]

      ZHOU M, HUANG C, GILES K, BLACKWELL A E, WYSOCKI V. 60th ASMS Conf. Denver:American Society for Mass Spectrometry. 2011:234921.ZHOU M, HUANG C, GILES K, BLACKWELL A E, WYSOCKI V. 60th ASMS Conf. Denver:American Society for Mass Spectrometry. 2011:234921.

    24. [24]

      GALLAGHER R, PATTISON C, RICHARDSON K, TOMCZYK N, PALMER M, WILDGOOSE J L, HEWITT D, WESTON D. 63th ASMS Conf. St. Louis:American Society for Mass Spectrometry. 2015:251435.GALLAGHER R, PATTISON C, RICHARDSON K, TOMCZYK N, PALMER M, WILDGOOSE J L, HEWITT D, WESTON D. 63th ASMS Conf. St. Louis:American Society for Mass Spectrometry. 2015:251435.

    25. [25]

      WILDGOOSE J L, GREEN M R, UJMA J, GILES K, TOMCZYK N. 64th ASMS Conf. San Antonio:American Society for Mass Spectrometry. 2017:289453.WILDGOOSE J L, GREEN M R, UJMA J, GILES K, TOMCZYK N. 64th ASMS Conf. San Antonio:American Society for Mass Spectrometry. 2017:289453.

    26. [26]

      UJMA J, RICHARDSON S, GILES K. 66th ASMS Conf. San Diego:American Society for Mass Spectrometry. 2018:294259.UJMA J, RICHARDSON S, GILES K. 66th ASMS Conf. San Diego:American Society for Mass Spectrometry. 2018:294259.

    27. [27]

      FEIDER C L, KRIEGER A, DEHOOG R J, EBERLIN L S. Anal. Chem., 2019, 91(7):4266-4290.FEIDER C L, KRIEGER A, DEHOOG R J, EBERLIN L S. Anal. Chem., 2019, 91(7):4266-4290.

    28. [28]

      DIXIT S M, RICHARDSON K, LANGRIDGE D, GILES K, RUOTOLO B T J. Am. Soc. Mass Spectrom., 2020, 31(4):880-887.DIXIT S M, RICHARDSON K, LANGRIDGE D, GILES K, RUOTOLO B T J. Am. Soc. Mass Spectrom., 2020, 31(4):880-887.

    29. [29]

      SHVARTSBURG A A, RICHARD D S. Anal. Chem., 2008, 80(24):9689-9699.SHVARTSBURG A A, RICHARD D S. Anal. Chem., 2008, 80(24):9689-9699.

    30. [30]

      REINECKE T, KIRK A T, AHRENS A, RADDATZ C R, THOBEN C, ZIMMERMANN S. Talanta, 2016, 150:1-6.REINECKE T, KIRK A T, AHRENS A, RADDATZ C R, THOBEN C, ZIMMERMANN S. Talanta, 2016, 150:1-6.

    31. [31]

      ZUHLKE M, RIEBE D, BEITZ T, LOHMANNSROBEN H G, ZENICHOWSKI K, DIENER M, LINSCHEID M W. Eur. J. Mass Spectrom., 2015, 21(3):391-402.ZUHLKE M, RIEBE D, BEITZ T, LOHMANNSROBEN H G, ZENICHOWSKI K, DIENER M, LINSCHEID M W. Eur. J. Mass Spectrom., 2015, 21(3):391-402.

  • 加载中
计量
  • PDF下载量:  16
  • 文章访问数:  1125
  • HTML全文浏览量:  307
文章相关
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-06-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章