Au24和Au25纳米团簇对二氧化碳电化学还原反应催化活性的分析

刘凯梵 李宗军 陈卫

引用本文: 刘凯梵, 李宗军, 陈卫. Au24和Au25纳米团簇对二氧化碳电化学还原反应催化活性的分析[J]. 分析化学, 2022, 50(4): 593-601. doi: 10.19756/j.issn.0253-3820.221092 shu
Citation:  LIU Kai-fan,  LI Zong-jun,  CHEN Wei. Electrocatalytic Activities of Au24 and Au25 Nanoclusters for Carbon Dioxide Reduction Reaction[J]. Chinese Journal of Analytical Chemistry, 2022, 50(4): 593-601. doi: 10.19756/j.issn.0253-3820.221092 shu

Au24和Au25纳米团簇对二氧化碳电化学还原反应催化活性的分析

    通讯作者: 陈卫,E-mail:weichen@ciac.ac.cn
  • 基金项目:

    国家自然科学基金项目(No.21773224)资助

    科技部重点研发计划项目(No.2020YFB1506001)

摘要: 通过电化学催化过程将二氧化碳(CO2)还原为有用的燃料和化学品是目前降低CO2排放量以及高效利用CO2的主要方式之一。金纳米团簇(Au NCs)因其结构明确、原子级尺寸精确和高表面活性而被认为是CO2电化学还原反应(CO2RR)的良好催化材料和模型催化剂。本研究可控合成了两种金纳米团簇Au24 NCs和Au25 NCs,并研究了其对CO2RR的催化活性。通过将Au24 NCs和Au25 NCs负载在碳基底上,制备的Au24 NCs/C和Au25 NCs/C催化剂表现出了优异的CO2RR活性和高的CO转化率。其中,Au24 NCs/C在–0.58 V达到77.5%的CO法拉第效率,Au25 NCs/C在–0.68 V达到68.9%的CO法拉第效率,即Au24 NCs/C比Au25 NCs/C的CO法拉第效率提高了8.6%。同时,相比于Au25 NCs/C,在Au24 NCs/C上CO达最高法拉第效率的电位正移100 mV,表明Au24 NCs/C对CO2RR催化活性更高。Au24 NCs和Au25 NCs不同的CO2RR催化活性可归因于二者不同的配位结构。Au24 NCs比Au25 NCs缺少一个中心原子,因而其外围配体在电化学过程中可能更易脱落,使得暴露的Au活性位点增多,导致Au24 NCs/C比Au25 NCs/C具有更优异的CO2RR催化性能。另外,Au24 NCs和Au25 NCs不同的结构会影响团簇的电子分布和表面原子活性,从而影响其催化活性。本研究为设计高性能、高选择性的CO2RR催化剂提供了参考。

English


    1. [1]

      JIN R C, ZENG C J, ZHOU M, CHEN Y X. Chem. Rev., 2016, 116(18):10346-10413.JIN R C, ZENG C J, ZHOU M, CHEN Y X. Chem. Rev., 2016, 116(18):10346-10413.

    2. [2]

      LU Y Z, CHEN W. J. Am. Chem. Soc., 2012, 41(9):3594-3623.LU Y Z, CHEN W. J. Am. Chem. Soc., 2012, 41(9):3594-3623.

    3. [3]

      CAI X, HU W G, XU S, YANG D, CHEN M Y, SHU M, SI R, DING W P, ZHU Y. J. Am. Chem. Soc., 2020, 142(9):4141-4153.CAI X, HU W G, XU S, YANG D, CHEN M Y, SHU M, SI R, DING W P, ZHU Y. J. Am. Chem. Soc., 2020, 142(9):4141-4153.

    4. [4]

      LIU Y Y, CHAI X Q, CAI X, CHEN M Y, JIN R C, DING W P, ZHU Y. Angew. Chem., Int. Ed., 2018, 57(31):9775-9779.LIU Y Y, CHAI X Q, CAI X, CHEN M Y, JIN R C, DING W P, ZHU Y. Angew. Chem., Int. Ed., 2018, 57(31):9775-9779.

    5. [5]

      ZENG C J, CHEN Y X, KIRSCHBAUM K, LAMBRIGHT K J, JIN R C. Science, 2016, 354(6319):1580-1584.ZENG C J, CHEN Y X, KIRSCHBAUM K, LAMBRIGHT K J, JIN R C. Science, 2016, 354(6319):1580-1584.

    6. [6]

      JIN R C. Nanoscale, 2010, 2(3):343-362.JIN R C. Nanoscale, 2010, 2(3):343-362.

    7. [7]

      LI X, TAKANO S, TSUKUDA T. J. Phys. Chem. C, 2021, 125(42):23226-23230.LI X, TAKANO S, TSUKUDA T. J. Phys. Chem. C, 2021, 125(42):23226-23230.

    8. [8]

      ZHANG X L, ZHANG Y Y, CHENG C, YANG Z X, HERMANSSON K. Nanoscale, 2020, 12(23):12497-12507.ZHANG X L, ZHANG Y Y, CHENG C, YANG Z X, HERMANSSON K. Nanoscale, 2020, 12(23):12497-12507.

    9. [9]

      HASEGAWA S, TAKANO S, HARANO K, TSUKUDA T. JACS Au, 2021, 1(5):660-668.HASEGAWA S, TAKANO S, HARANO K, TSUKUDA T. JACS Au, 2021, 1(5):660-668.

    10. [10]

      KONG J, QIN Y H, WANG T L, WANG C W. Int. J. Hydrogen Energy, 2020, 45(51):27254-27262.KONG J, QIN Y H, WANG T L, WANG C W. Int. J. Hydrogen Energy, 2020, 45(51):27254-27262.

    11. [11]

      XU J Y, XU S, CHEN M Y, ZHU Y. Nanoscale, 2020, 12(10):6020-6028.XU J Y, XU S, CHEN M Y, ZHU Y. Nanoscale, 2020, 12(10):6020-6028.

    12. [12]

      ZHUANG S L, CHEN D, LIAO L W, ZHAO Y, XIA N, ZHANG W H, WANG C M, YANG J, WU Z K. Angew.Chem., Int. Ed., 2020, 59(8):3073-3077.ZHUANG S L, CHEN D, LIAO L W, ZHAO Y, XIA N, ZHANG W H, WANG C M, YANG J, WU Z K. Angew.Chem., Int. Ed., 2020, 59(8):3073-3077.

    13. [13]

      ZHUANG Z H, CHEN W. Analyst, 2020, 145(7):2621-2630.ZHUANG Z H, CHEN W. Analyst, 2020, 145(7):2621-2630.

    14. [14]

      ZHANG J W, LI H, LI J Q, CHEN Y, QU P, ZHAI Q G. Dalton Trans., 2021, 50(47):17482-17486.ZHANG J W, LI H, LI J Q, CHEN Y, QU P, ZHAI Q G. Dalton Trans., 2021, 50(47):17482-17486.

    15. [15]

      WANG P, HUANG C H, CHEN X L, LU C Z. Chin. J. Struct. Chem., 2021, 40(11):1489-1495.WANG P, HUANG C H, CHEN X L, LU C Z. Chin. J. Struct. Chem., 2021, 40(11):1489-1495.

    16. [16]

      HESARI M, DING Z F. Acc. Chem. Res., 2017, 50(2):218-230.HESARI M, DING Z F. Acc. Chem. Res., 2017, 50(2):218-230.

    17. [17]

      KHAN R W, NAVEEN M H, BANG J H. ACS Energy Lett., 2021, 6(8):2713-2725.KHAN R W, NAVEEN M H, BANG J H. ACS Energy Lett., 2021, 6(8):2713-2725.

    18. [18]

      LEES E W, MOWBRAY B A W, PARLANE F G L, BERLINGUETTE C P. Nat. Rev. Mater., 2022, 7(1):55-64.LEES E W, MOWBRAY B A W, PARLANE F G L, BERLINGUETTE C P. Nat. Rev. Mater., 2022, 7(1):55-64.

    19. [19]

      ZHAO S, JIN R X, JIN R C. ACS Energy Lett., 2018, 3(2):452-462.ZHAO S, JIN R X, JIN R C. ACS Energy Lett., 2018, 3(2):452-462.

    20. [20]

      ZHU W L, MICHALSKY R, METIN O, LV H F, GUO S J, WRIGHT C J, SUN X L, PETERSON A A, SUN S H. J.Am. Chem. Soc., 2013, 135(45):16833-16836.ZHU W L, MICHALSKY R, METIN O, LV H F, GUO S J, WRIGHT C J, SUN X L, PETERSON A A, SUN S H. J.Am. Chem. Soc., 2013, 135(45):16833-16836.

    21. [21]

      MISTRY H, RESKE R, ZENG Z. H, ZHAO Z J, GREELEY J, STRASSER P, ROLDAN C B. J. Am. Chem. Soc., 2014,136(47):16473-16476.MISTRY H, RESKE R, ZENG Z. H, ZHAO Z J, GREELEY J, STRASSER P, ROLDAN C B. J. Am. Chem. Soc., 2014,136(47):16473-16476.

    22. [22]

      ZHU W L, ZHANG Y J, ZHANG H Y, LV H F, LI Q, MICHALSKY R, PETERSON A A, SUN S H. J. Am. Chem.Soc., 2014, 136(46):16132-16135.ZHU W L, ZHANG Y J, ZHANG H Y, LV H F, LI Q, MICHALSKY R, PETERSON A A, SUN S H. J. Am. Chem.Soc., 2014, 136(46):16132-16135.

    23. [23]

      FU J J, ZHU W L, CHEN Y, YIN Z Y, LI Y Y, LIU J, ZHANG H Y, ZHU J J, SUN S H. Angew. Chem., Int. Ed., 2019,58(40):14100-14103.FU J J, ZHU W L, CHEN Y, YIN Z Y, LI Y Y, LIU J, ZHANG H Y, ZHU J J, SUN S H. Angew. Chem., Int. Ed., 2019,58(40):14100-14103.

    24. [24]

      WELCH A J, DUCHENE J S, TAGLIABUE G, DAVOYAN A, CHENG W H, ATWATER H A. ACS Appl. Energy Mater., 2019, 2(1):164-170.WELCH A J, DUCHENE J S, TAGLIABUE G, DAVOYAN A, CHENG W H, ATWATER H A. ACS Appl. Energy Mater., 2019, 2(1):164-170.

    25. [25]

      ZHAO S, AUSTIN N, LI M, SONG Y B, HOUSE S D, BERNHARD S, YANG J C, MPOURMPAKIS G, JIN R C.ACS Catal., 2018, 8(6):4996-5001.ZHAO S, AUSTIN N, LI M, SONG Y B, HOUSE S D, BERNHARD S, YANG J C, MPOURMPAKIS G, JIN R C.ACS Catal., 2018, 8(6):4996-5001.

    26. [26]

      LI S T, NAGARAJAN A V, ALFONSO D R, SUN M K, KAUFFMAN D R, MPOURMPAKIS G, JIN R C. Angew.Chem., Int. Ed., 2021, 60(12):6351-6356.LI S T, NAGARAJAN A V, ALFONSO D R, SUN M K, KAUFFMAN D R, MPOURMPAKIS G, JIN R C. Angew.Chem., Int. Ed., 2021, 60(12):6351-6356.

    27. [27]

      QIN L B, SUN F, MA X S, MA G Y, TANG Y, WANG L K, TANG Q, JIN R C, TANG Z H. Angew. Chem., Int. Ed.,2021, 60(50):26136-26141.QIN L B, SUN F, MA X S, MA G Y, TANG Y, WANG L K, TANG Q, JIN R C, TANG Z H. Angew. Chem., Int. Ed.,2021, 60(50):26136-26141.

    28. [28]

      ALFONSO D R, KAUFFMAN D, MATRANGA C. J. Chem. Phys., 2016, 144(18):184705.ALFONSO D R, KAUFFMAN D, MATRANGA C. J. Chem. Phys., 2016, 144(18):184705.

    29. [29]

      CAI X, SARANYA G, SHEN K Q, CHEN M Y, SI R, DING W P, ZHU Y. Angew. Chem., Int. Ed., 2019, 58(29):9964-9968.CAI X, SARANYA G, SHEN K Q, CHEN M Y, SI R, DING W P, ZHU Y. Angew. Chem., Int. Ed., 2019, 58(29):9964-9968.

    30. [30]

      DAS A, LI T, NOBUSADA K, ZENG Q, ROSI N L, JIN R. J. Am. Chem. Soc., 2012, 134(50):20286-20289.DAS A, LI T, NOBUSADA K, ZENG Q, ROSI N L, JIN R. J. Am. Chem. Soc., 2012, 134(50):20286-20289.

    31. [31]

      SHICHIBU Y, NEGISHI Y, WATANABE T, CHAKI N K, KAWAGUCHI H, TSUKUDA T. J. Phys. Chem. C, 2007,111(22):7845-7847.SHICHIBU Y, NEGISHI Y, WATANABE T, CHAKI N K, KAWAGUCHI H, TSUKUDA T. J. Phys. Chem. C, 2007,111(22):7845-7847.

    32. [32]

      NEGISHI Y, NOBUSADA K, TSUKUDA T J. Am. Chem. Soc., 2005, 127(14):5261-5270.NEGISHI Y, NOBUSADA K, TSUKUDA T J. Am. Chem. Soc., 2005, 127(14):5261-5270.

    33. [33]

      GAO S, LIN Y, JIAO X C, SUN Y F, LUO Q Q, ZHANG W H, LI D Q, YANG J L, XIE Y. Nature, 2016, 529(7584):68-71.GAO S, LIN Y, JIAO X C, SUN Y F, LUO Q Q, ZHANG W H, LI D Q, YANG J L, XIE Y. Nature, 2016, 529(7584):68-71.

    34. [34]

      LU Y Z, ZHANG C M, LI X K, FROJD A R, XING W, CLAYBORNE A Z, CHEN W. Nano Energy, 2018, 50:316-322.LU Y Z, ZHANG C M, LI X K, FROJD A R, XING W, CLAYBORNE A Z, CHEN W. Nano Energy, 2018, 50:316-322.

  • 加载中
计量
  • PDF下载量:  15
  • 文章访问数:  778
  • HTML全文浏览量:  133
文章相关
  • 收稿日期:  2022-02-22
  • 修回日期:  2022-03-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章