Stereoselective Vinylation under Mild Metal-Free Conditions to Synthesize N-Vinylazoles

Shuang Li Heng Xiang Ruihang Jiang Jia Ju Pengchong Jiao Hualei Yuan Hongbin Sun Huaqiang Cai

Citation:  Li Shuang, Xiang Heng, Jiang Ruihang, Ju Jia, Jiao Pengchong, Yuan Hualei, Sun Hongbin, Cai Huaqiang. Stereoselective Vinylation under Mild Metal-Free Conditions to Synthesize N-Vinylazoles[J]. Chinese Journal of Organic Chemistry, 2018, 38(6): 1493-1499. doi: 10.6023/cjoc201710009 shu

无金属、温和条件下唑的选择性N-烯基化

    通讯作者: 居佳, jujia@caep.cn
    孙宏滨, sunhb@mail.neu.edu.cn
  • 基金项目:

    中国工程物理研究院化工材料研究所科技创新基金 KJCX-201502

    中国工程物理研究院化工材料研究所科技创新基金(No.KJCX-201502)资助项目

摘要: N-乙烯基唑化合物因其优异的生物活性,是医药、农药等领域中重要的活性中间体.以唑类化合物为原料,2,3-二溴丙酸甲酯为Michael受体,近室温无金属催化合成了22种具有反式烯烃基团的N-乙烯基唑化合物,其中包括15种新化合物.研究表明,该反应条件温和,普适性好,能够高效合成立体选择性的N-乙烯基唑化合物.

English

  • Functionalized nitrogen heterocycles commonly exist in chemicals that are widely used in agrochemicals, pharmaceuticals, and energetic materials.[1] In particular, N-vinylazoles[2] often form the core building blocks of antitumor, antifungal, antimicrobial, and other bioactive compounds.[3] Furthermore, they are important monomers for synthesizing polymers that are utilized in photochromics and semiconductive materials.[4] Thus, the synthesis of vinylazoles is of great interest to organic chemists.

    The preparation of functional azoles can be performed through the N—C coupling of azoles with organic halides. This usually requires the expensive catalyst that contains noble metal, such as silver, palladium and gold.[5] Another typical method is the addition of azoles with alkynes (Scheme 1a), and the coupling of azoles with the active bromo-alkenes bearing electron-withdrawing substituents (Scheme 1b)[5a, 5b, 5f] also works. It is noticed that all of these procedures require the noble metal catalyst. However, the expense of the noble metal is troublesome, and the metal-containing catalysts tend to be toxic.[2b, 6]

    Scheme 1

    Scheme 1.  Methods for preparation of N-alkenyl azoles

    Consequently, the facile metal-free methods for the vinylation have been designed to release the necessity of the precious metal catalyst. The construction of vinylazoles is realized via the activation of the halogen esters and the straightforward C—N coupling. This procedure takes advantages of metal-free and mild reaction conditions, and it also exhibits broad availability. In addition, using a α-halo Michael acceptor as the vinylating reagent produces vinylazoles with good regioselectivity, and the sequential Zaitsev elimination of hydrogen halide generates the double bond with good stereoselectivity. In this paper, we report the metal-free N—C coupling at room temperature, and a wide spectrum of stereoselective vinylazoles are synthesized (Scheme 1c).

    Initially, we chose the coupling between 5-phenyl-1H- tetrazole (0.2 mmol) and methyl 2, 3-dibromopropionate (0.24 mmol) as a probing reaction to identify the efficiency of various nucleophilic promoters. The reactions are carried out in aprotic solvent (2 mL) and under room temperature. The structure of 3a was firstly confirmed by MS and NMR. As shown in Table 1, Et3N displayed the highest activity with 79% chromatographic yield. The results showed that the tertiary amines (Table 1, Entries 2~7), including tetramethylethylenediamine (TMEDA), trimethylamine, tributylamine, benzyldimethylamine (BDMA), 1, 4-diazabicyclo[2.2.2]octane (DABCO) and urotropine were more positive than ethylenediamine (EDA, Entry 1), which is a kind of primary amines. BDMA (Table 1, Entry 5) and DABCO (Table 1, Entry 6) produced the same optimal yields as Et3N, but urotropine gave a poor yield because of its poor solubility in dimethyl sulfoxide (DMSO). The tributylamine was also less active (Table 1, Entry 4). So Et3N is the best choice especially for its ready availability. Reducing the loading amount of Et3N from 10 equiv. to 5 equiv. produced similar yield. In the further refinement, controlled experiments were employed in various solvents. Only DMSO gave the acceptable yield of vinylazoles. Using Et3N as the only solvent, the reaction displayed a lower yield (33%, Table 1, Entry 13), but no vinylazole was produced using only DMSO or N-methyl pyrrolidone (NMP) in the absence of bases even at 80 ℃ (Table 1, Entry 14~16). We deduced that DMSO facilitated the base-mediated dehydrohalogenation because of its dielectric nature, [7] and the coupling reaction might undergo a selective DMSO-mediated dehalogenative process which converted α, β-dihalopro- panoate derivatives into haloacrylate analogues.[8]

    Table 1

    Table 1.  The condition optimization for the metal-free vinylation of 5-phenyl-1H-tetrazolea
    下载: 导出CSV
    Entry Base Solvent T/℃ Yield a /%
    1 EDA DMSO 25 N.R.
    2 TMEDA DMSO 25 42
    3 Et3N DMSO 25 79
    4 Bu3N DMSO 25 37
    5 BDMA DMSO 25 79
    6 DABCO DMSO 25 78
    7 Urotropine DMSO 25 16
    8 Et3N Ethanol 25 12
    9 Et3N Acetone 25 43
    10 Et3N CH2Cl2 25 34
    11 Et3N 1, 4-Dioxane 25 35
    12 Et3N CH3Ph 25 42
    13 Et3N 25 33
    14 DMSO 25 N.R. b
    15 DMSO 80 N.R.
    16 NMP 80 N.R.
    17 Et3N DMSO 15 45
    18 Et3N DMSO 35 94
    19 Et3N DMSO 80 95
    a Reaction conditions: 1a (0.24 mmol), 2a (0.2 mmol) and base (5 equiv.) in 2 mL of solvent for 2 h; chromtographic yield of 3a; b N.R.: No reaction.

    Furthermore, it has been found that protonic solvent such as ethanol (Table 1, Entry 8) has no positive effect. In addition, when the coupling was carried out in acetone, dichloromethane, dioxane or methylbenzene, the reactions did not provide high yield (Table 1, Entries 9~12). The vinylation gave low conversion at a temperature lower than 25 ℃ (Table 1, Entry 17). A slight raising temperature to 35 ℃ and extending reaction to 4 h improved the yield of target product to 94% (Table 1, Entry 18), however, a higher temperature 80 ℃ did not show obvious promotion anymore (Table 1, Entry 19). This indicated that the reaction was not a temperature dependent one. Considering the ease of operation and the good selectivity, near room temperature would be the best choice.

    Under the optimized conditions, a series of functionalized tetrazoles were investigated with 2, 3-dibromopro- pionate, and all of the results are shown in Table 2. The structure of 3a was further confirmed by the single crystal XRD, which explicitly authenticated that the vinyl substituent was at the N2 position, and the C=C double bond was in trans-form (Figure 1).

    Table 2

    Table 2.  Metal-free N-vinylation of 1H-tetrazoles with 2, 3-dibromopropionatea, b
    下载: 导出CSV

    Figure 1

    Figure 1.  Structure of 5-phenyl-1H-tetrazole from single crystal XRD

    We were pleased to find that the various 5-substituted tetrazoles reacted with 2a to afford the vinylazoles with good to excellent isolated yields, including electron-defi- cient, electron-neutral and electron-rich tetrazoles. Especially, all the phenyl tetrazoles gave the 2-substituted products as the single isomers (3e3k). Besides, N-vinylation of 5-pyridyl-1H-tetrazole with 1a provided the considerable isomers (3d: 3d'=71: 9). However, the reaction of 1H-tetrazole with 5-methyl-1H-tetrazoles gave different results in the immiscible Et3N/DMSO. The 5-methyl-1H-tetrazole reacted with 1a to give an overall yield of 86%, and the two regioisomers 3b and 3b' are in approximate 1: 2.5 ratio, while the N1-substituted is the primary product. These results indicate that the hindrance of tetrazoles guides the regioselectivity of the N1 or N2 substituted position.

    Inspired by the extensive N-vinylated-tetrazoles, we charged a series of azoles in this metal free vinylation, including triazoles, imidazoles and 2-substituted 1H-imi- dazolines. They were similarly treated with α-C(sp3)—H containing halogen esters (1a). All of the tested azoles gave the expected vinylated products (Table 3, 4a4g), merely a relatively longer time and higher temperature were required because these less-nitrogen heterocycles showed slower coupling rate. To our delight, they produced a spectrum of pure and single products (except 4e). Besides, the more stable 2, 3-dibromopropionamide as the alternative of 1a also showed desirable result (4h). These results promise the generality of this metal-free methodology.

    Table 3

    Table 3.  Metal-freeN-vinylation of azoles with 2, 3-dibromo- propionatea, b
    下载: 导出CSV

    In order to further discover the nature of the reaction, we made some efforts to elucidate the mechanism of the excellent stereoselectivity. By analyzing the structural isomer distribution, we deduced the reaction pathway as illustrated in Figure 2.

    Figure 2

    Figure 2.  Proposed mechanism

    The reaction was initialled by the nucleophilic base β-dehydrohalogenation to form the α-bromo acrylate (1a'). Meanwhile, due to the acidity of azoles, it was also depro- tonated by the base to generate the anionic species (2a') and easily transform into the corresponding isomer (2a'').After that, 1a' reacted with 2a'' as Michael addition to form N-alkylated intermediate 3a', which underwent a Zaitsev elimination to give the target products with perfect trans-stereoselectity. This pathway was confirmed by the capture of 3a', which is detectable by MS promptly, and could easily remove HBr in Et3N and transform into 3a. Similarly, another intermediate 1a' is also traceable during the initial time of reaction under Et3N (5 min, GC-MS). We obtained the same product 3a when we used α-bromo acrylate as the starting material instead of 2, 3-dibromopro- pionate. Besides, the vinylation mainly occurred at N2-position which could be assigned to the steric hindrance of the 5-substituted group of tetrazoles. These results support the pathway that we have deduced.

    In summary, a metal-free method was developed for N-vinylation of NH-azoles, and the corresponding N-vinylazoles were obtained from the coupling of tetrazoles, imidazoles, imidazolines and other heterocycles with α-C(sp3)—H containing dihalogen esters. The reaction conditions are quite mild, and the products are highly selective as trans-isomers.

    In a 25 mL of sealed tube, the mixture of methyl 2, 3-dibromopropinate (0.24 mmol), 5-phenyl-1H-tetrazole (0.2 mmol), Et3N (1 mmol) and DMSO (2 mL) was added. The mixture was stirred at room temperature for 2 h (imidazolines were at 60 ℃ for 12 h). When the reaction completed (monitored by TLC), the reaction mixture was poured into 20 mL of water, then extracted with ethyl acetate. The organic layer was separated, dried over anhydrous Na2SO4, and then evaporated under reduced pressure. The crude product was purified on silica gel (ethyl acetate/petroleum ether), and the target product was obtained as a write solid (37 mg, 79%). Other azoles were synthesized following the similar procedure.

    In a 25 mL sealed tube, the mixture of 1H-imidazoline (0.2 mmol), methyl 2, 3-dibromopropinate (0.24 mmol), Et3N (1 mmol) and DMSO (2 mL) was added. The mixture was stirred at 60 ℃ for 12 h. When the reaction completed (monitored by TLC), the reaction mixture was poured into 20 mL of water, then extracted with ethyl acetate (10 mL×3). The organic layer was separated, dried over anhydrous Na2SO4, then evaporated under reduced pressure. The crude product was purified on silica gel (EA/PE), and the target product was obtained as a white solid (22 mg, 72%).

    Other tetrazoles were synthesized following the similar procedure.

    (2E)-2-(2-Propenoic acid methyl ester)-5-phenyl-tetra- zole (3a): White solid (379 mg, 94%); m.p. 145.3~146.6 ℃ (Lit.[9] 144.5~145.5 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.42 (d, J=14.1 Hz, 1H), 8.27~8.17 (m, 2H), 7.55~7.51 (m, 3H), 6.93 (d, J=14.1 Hz, 1H), 3.88 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 165.90, 165.33, 135.49, 131.35, 129.22, 127.47, 126.34, 113.55, 52.57; GCMS (70 eV) m/z (%): 202.1 (59, [M-N2]+), 171.1 (100, [M-C2H3O2]+).

    (2E)-2-(2-Propenoic acid methyl ester)-5-methyl-tetra- zole (3b): White solid (67 mg, 24%); m.p. 84.2~85.1 ℃ (Lit.[9a] 83.0~84.0 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.33 (d, J=14.4 Hz, 1H), 6.82 (d, J=14.4Hz, 1H), 3.86 (s, 3H), 2.62 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 165.34, 164.23, 135.38, 113.19, 52.52, 11.10; GCMS (70 eV) m/z (%): 140.1 (67, [M-N2]+), 109.0 (56, [M-C2H3O2]+).

    (2E)-1-(2-Propenoic acid methyl ester)-5-methyl-tetra- zole (3b'): White solid (173 mg, 62%): m.p. 63.0~64.2 ℃ (Lit.[9a] 61.0 ℃); 1H NMR (600 MHz, CDCl3) δ: 7.89 (d, J=13.8Hz, 1H), 6.85 (d, J=13.8 Hz, 1H), 3.87 (s, 3H), 2.71 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 165.34, 151.97, 131.00, 114.42, 52.60, 9.21; GCMS (70 eV) m/z (%): 140.1 (67, [M-N2]+), 109.0 (56, [M-C2H3O2]+).

    (2E)-2-(2-Propenoic acid methyl ester)-tetrazole (3c): White solid (60 mg, 24%); m.p. 110.2~111.5 ℃ (Lit.[10] 111.5~112.5 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.63 (s, 1H), 8.42 (d, J=14.1 Hz, 1H), 6.93 (d, J=14.1 Hz, 1H), 3.88 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 165.07, 153.64, 135.36, 114.53, 52.64; GCMS (70 eV) m/z (%): 126.0 (28, [M-N2]+), 95.0 [M-C2H3O2]+.

    (2E)-1-(2-Propenoic acid methyl ester)-tetrazole (3c'): White solid (131 mg, 52%); m.p. 61.3~62.6 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.89 (s, 1H), 8.17 (d, J=14.4 Hz, 1H), 6.80 (d, J=14.4 Hz, 1H), 3.88 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 164.89, 141.83, 132.12, 114.58, 52.74; GCMS (70 eV) m/z (%): 126.0 (28, [M-N2]+), 95.0 [M-C2H3O2]+.

    (2E)-2-(2-Propenoic acid methyl ester)-5-(2-pyridyl)- tetrazole (3d): White solid (329 mg, 71%); m.p. 92.2~93.6 ℃; 1H NMR (600 MHz, CDCl3) δ: 9.37 (d, J=14.1 Hz, 1H), 8.82 (d, J=4.8 Hz, 1H), 8.42 (d, J=7.9 Hz, 1H), 7.96 (td, J=7.8, 1.8 Hz, 1H), 7.52 (ddd, J=7.7, 4.8, 1.2 Hz, 1H), 7.00 (d, J=14.2 Hz, 1H), 3.87 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 165.84, 151.43, 150.02, 144.16, 137.93, 135.34, 126.27, 125.46, 114.82, 52.47; HRMS (ESI) calcd for C10H10N5O2 [M+H]+ 232.0829, found 232.0824.

    (2E)-1-(2-Propenoic acid methyl ester)-5-(2-pyridyl)- tetrazole (3d'): White solid (42 mg, 9%); m.p. 47.5~48.3 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.83 (dd, J=4.8, 0.9 Hz, 1H), 8.45 (d, J=14.1 Hz, 1H), 8.32 (d, J=7.9 Hz, 1H), 7.91 (td, J=7.7, 1.7 Hz, 1H), 7.46 (ddd, J=7.6, 4.8, 1.2 Hz, 1H), 7.08 (d, J=14.1 Hz, 1H), 3.88 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 165.42, 165.18, 150.78, 145.88, 137.44, 135.36, 125.70, 123.36, 114.60, 52.65; HRMS (ESI) calcd for C10H10N5O2 [M+H]+ 232.0829, found 232.0825.

    (2E)-2-(2-Propenoic acid methyl ester)-5-benzyl-tetra- zole (3e): White solid (308 mg, 63%); m.p. 56.7~57.9 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.33 (d, J=14.1 Hz, 1H), 7.35~7.33 (m, 4H), 7.32~7.27 (m, 1H), 6.83 (d, J=14.1 Hz, 1H), 4.30 (s, 2H), 3.85 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 166.76, 165.26, 135.86, 135.41, 129.01, 128.93, 127.33, 113.55, 52.53, 31.98; HRMS (ESI) calcd for C12H13N4O2 [M+H]+ 245.1033, found 245.1028.

    (2E)-2-(2-Propenoic acid methyl ester)-5-ethylsuleenyl- tetrazole (3f): White solid (214 mg, 50%); m.p. 74.4~75.5 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.31 (d, J=14.0 Hz, 1H), 6.79 (d, J=14.1 Hz, 1H), 3.86 (s, 3H), 3.27 (q, J=7.4 Hz, 2H), 1.46 (t, J=7.3 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ: 166.78, 165.32, 134.97, 113.18, 52.57, 26.48, 14.93; HRMS (ESI) calcd for C7H11N4O2S [M+ H]+ 215.0597, found 215.0594.

    (2E)-2-(2-Propenoic acid ethyl ester)-5-phenyl-tetra- zole[10](3g): White solid (328 mg, 76%); m.p. 62.3~63.2 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.41 (d, J=14.4 Hz, 1H), 8.21~8.20 (m, 2H), 7.53~7.52 (m, 3H), 6.93 (d, J=14.1 Hz, 1H), 4.37~4.25 (m, 2H), 1.38~1.33 (m, 3H); 13C NMR (151 MHz, CDCl3) δ: 165.86, 164.87, 135.30, 131.33, 129.21, 127.45, 126.37, 114.05, 61.62, 14.36; GCMS (70 eV) m/z (%): 216.1 (52, [M-N2]+), 171.1 (100, [M-C2H3O2]+).

    (2E)-2-(2-Propenoic acid methyl ester)-5-(3-methoxyl) phenyl-tetrazole (3h): White solid (332 mg, 62%); m.p. 102.2~103.5 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.42 (d, J=14.1 Hz, 1H), 7.81 (dt, J=7.7, 1.2 Hz, 1H), 7.74 (dd, J=2.7, 1.5 Hz, 1H), 7.44 (t, J=7.9 Hz, 1H), 7.07 (ddd, J=8.3, 2.7, 1.0 Hz, 1H), 6.94 (d, J=14.1 Hz, 1H), 3.91 (s, 3H), 3.88 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 165.83, 165.34, 135.48, 130.38, 119.89, 117.80, 113.60, 112.04, 55.63, 52.60. HRMS (ESI) calcd for C12H13N4O3 [M+H]+ 261.0982, found 261.0978.

    (2E)-2-(2-Propenoic acid methyl ester)-5-(3-bromo)- phenyl-tetrazole (3i): White solid (466 mg, 76%); m.p. 123.6~124.8 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.42 (d, J=14.1 Hz, 1H), 8.37 (t, J=1.8 Hz, 1H), 8.17~8.12 (m, 1H), 7.66 (ddd, J=8.0, 2.0, 1.0 Hz, 1H), 7.41 (t, J=7.9 Hz, 1H), 6.95 (d, J=14.1 Hz, 1H), 3.89 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 165.20, 164.64, 135.37, 134.32, 130.81, 130.39, 128.25, 125.99, 123.29, 114.02, 52.65; HRMS (ESI) calcd for C11H10BrN4O2 [M+H]+ 308.9982, found 308.9977.

    (2E)-2-(2-Propenoic acid methyl ester)-5-(2-bromo)- phenyl-tetrazole (3j): White solid (380 mg, 62%); m.p. 84.5~85.5 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.45 (d, J=14.4 Hz, 1H), 7.96 (dd, J=7.8, 1.8 Hz, 1H), 7.77 (dd, J=8.4, 1.2 Hz, 1H), 7.47~7.46 (m, 1H), 7.38~7.36 (m, 1H), 6.97 (d, J=13.8 Hz, 1H), 3.88 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 165.20, 164.88, 135.46, 134.56, 132.03, 131.96, 127.73, 127.49, 122.30, 114.15, 52.60; HRMS (ESI) calcd for C11H10N4O2Br [M+H]+ 308.9982, found 308.9981.

    (2E)-2-(2-Propenoic acid methyl ester)-5-(3-chloro)- phenyl-tetrazole (3k): White solid (485 mg, 92%); m.p. 168.5~169.5 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.41 (d, J=14.1 Hz, 1H), 8.18~8.13 (m, 2H), 7.53~7.49 (m, 2H), 6.93 (d, J=14.1 Hz, 1H), 3.88 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 165.25, 165.05, 137.54, 135.40, 129.58, 128.74, 124.83, 113.82, 52.64; HRMS (ESI) calcd for C11H10N4O2Cl [M+H]+ 265.0487, found 265.0484.

    (2E)-1-(2-Propenoic acid methyl ester)-2-phenyl-imida- zoline (4a): White solid (140 mg, 27%); m.p. 109.0~110.6 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.70 (d, J=13.3 Hz, 1H), 7.28~7.25 (m, 2H), 7.23~7.19 (m, 2H), 7.17 (s, 1H), 4.82 (d, J=13.3 Hz, 1H), 4.05~4.00 (m, 2H), 3.67~3.63 (m, 2H), 3.57 (s, 3H), 2.30 (d, J=0.8 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ: 168.71, 160.84, 140.99, 139.04, 131.79, 129.50, 128.90, 128.61, 125.78, 93.80, 53.91, 51.25, 47.18, 21.50, 21.49; HRMS (ESI) calcd for C14H15N2O3 [M-H]+ 259.1183, found 259.1184.

    (2E)-1-(2-Propenoic acid methyl ester)-2-(3-methyl)- phenyl-imidazoline (4b): White solid (283 mg, 58%); m.p. 106.2~107.5 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.79 (d, J=13.3 Hz, 1H), 7.37~7.27 (m, 4H), 4.91 (d, J=13.3 Hz, 1H), 4.14~4.09 (m, 2H), 3.74 (t, J=9.3 Hz, 2H), 3.66 (s, 3H), 2.40 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 168.71, 160.82, 140.98, 139.03, 131.78, 129.49, 128.89, 128.61, 125.77, 93.78, 53.91, 51.24, 47.17, 21.50; HRMS (ESI) calcd for C14H17N2O2 [M+H]+ 245.1285, found 245.1280

    (2E)-1-(2-Propenoic acid methyl ester)-2-(4-trifluoro- methyl)phenyl-imidazoline (4c): White solid (149 mg, 25%). m.p. 126.7~127.9 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.76 (d, J=8.1 Hz, 2H), 7.69 (d, J=13.3 Hz, 1H), 7.67 (d, J=8.2 Hz, 2H), 4.97 (d, J=13.3 Hz, 1H), 4.16 (t, J=9.4 Hz, 2H), 3.78 (t, J=9.3 Hz, 2H), 3.67 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 168.47, 159.46, 140.15, 133.11, 132.89, 132.38, 129.41, 126.16, 94.76, 54.18, 51.38, 47.36; HRMS (ESI) calcd for C14H14N2O2F3 [M+H]+ 299.0997, found 299.1002.

    (2E)-1-(2-Propenoic acid methyl ester)-2-phenyl-imid- azoline (4d): White solid (163 mg, 64%); m.p. 142.3~143.5 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.79 (d, J=13.3 Hz, 1H), 7.56~7.43 (m, 5H), 4.93 (d, J=13.3 Hz, 1H), 4.13 (t, J=9.3 Hz, 2H), 3.75 (t, J=9.3 Hz, 2H), 3.66 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 168.68, 160.64, 140.85, 131.04, 129.09, 128.86, 128.71, 93.93, 53.94, 51.26, 47.22. HRMS (ESI) calcd for C13H15N2O2 [M+H]+ 231.1128, found 231.1129.

    (2E)-1-(2-Propenoic acid methyl ester)-5-methyl-benzo- triazole (4e): White solid (282 mg, 65%). m.p. 94.0~95.2 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.49 (dd, J=14.3, 10.6 Hz, 1H), 8.05~7.87 (m, 1H), 7.63~7.50 (m, 1H), 7.48~7.29 (m, 1H), 6.73 (dd, J=14.3, 12.8 Hz, 1H), 3.87 (d, J=2.2 Hz, 3H), 2.57 (d, J=22.4 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ: 166.53, 135.82, 135.53, 131.42, 127.59, 120.27, 119.97, 109.65, 107.36, 52.16, 21.47. HRMS (ESI) calcd for C11H12N3O2 [M+H]+ 218.0924, found 218.0921.

    (2E)-1-(2-Propenoic acid methyl ester)-1, 3, 5-triazole (4f): White solid (192 mg, 63%); m.p 149.0~151.0 ℃ (Lit.[11] 155.0 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.34 (s, 1H), 8.07 (s, 1H), 8.01 (dd, J=13.8, 0.9 Hz, 1H), 6.60 (d, J=13.8 Hz, 1H), 3.82 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 166.20, 153.78, 144.71, 135.27, 110.14, 52.30; GCMS (70 eV) m/z (%): 153.0 (70, [M]+), 122.0 (100, [M-CH3O]+), 95.0 (16, [M+H-C2H3O2]+).

    (2E)-1-(2-Propenoic acid methyl ester)-imidazole (4g): White solid (218 mg, 72%); m.p. 121.0~122.0 ℃ (Lit.[12] 118.0~119.0 ℃); 1H NMR (600 MHz, CDCl3) δ: 7.90 (d, J=14.2 Hz, 1H), 7.76 (s, 1H), 7.23 (t, J=1.4 Hz, 1H), 7.17 (s, 1H), 6.05 (d, J=14.2 Hz, 1H), 3.81 (s, 3H); 13C NMR (151 MHz, CDCl3) δ: 166.49, 138.01, 136.71, 132.07, 116.25, 106.70, 52.17; GCMS (70 eV) m/z (%): 152.1 (100, [M]+), 121.0 (78, [M-CH3O]+), 93.1 (28, [M-C2H3O2]+).

    (2E)-2-(2-Propanamide)-5-phenyl-tetrazole (4h): White solid (211 mg, 49%); m.p. 240 ℃ (dec.); 1H NMR (600 MHz, DMSO-d6) δ: 8.37 (d, J=14.0 Hz, 1H), 8.22 (dd, J=6.7, 3.0 Hz, 2H), 8.07 (s, 1H), 7.71 (dd, J=5.0, 2.0 Hz, 2H), 7.20 (d, J=13.9 Hz, 1H), 2.64 (s, 2H); 13C NMR (151 MHz, DMSO-d6) δ: 164.96, 164.63, 132.36, 131.77, 129.93, 127.24, 126.43, 118.57, 40.88. HRMS (ESI) calcd for C6H10NO2 [M+H+-N2] 188.0824, found 188.0816.

    2-((2-Bromo)-methylpropionate)-5-pheny-tetrzole (3a' reactive intermediate): GCMS (70 eV) m/z (%): 204.0 (7, [M-N2-Br]+), 131.1 (100, [M-C2H3O2-N2]+), 104.1 (78, [M-C2H3O2-C7H5N4]+).

    2-Bromo-2-propenoic acid methyl ester (1a' reactive intermediate): GCMS (70 eV) m/z (%): 164.0 (80, [M]+), 104.9 (72, [M-C2H3O2]+), 85.0 (67, [M-Br]+), 59.0 (24, [M-C2H2Br]+).

    Supporting Information X-ray crystallographic structure, crystal data and copies of NMR spectra. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.

    1. [1]

      (a) Purser, S. ; Moore, P. R. ; Swallow, S. ; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (b) Peng, X. -Z. ; Huang, Q. -X. ; Zhang, K. ; Yu, Y. -Y. ; Wang, Z. -F. ; Wang, C. -W. Sci. Total Environ. 2012, 426, 311.
      (c) He, C. ; Shreeve, J. M. Angew. Chem., Int. Ed. 2016, 55, 772.
      (d) Gao, H. ; Shreeve, J. M. Chem. Rev. 2011, 111, 7377.
      (e) Xiao, L. -W. ; Zhang, G. -X. ; Jing, X. -M. ; Zhou, Q. -X. ; Feng, R. Chin. J. Org. Chem. 2016, 36, 1000(in Chinese).
      (肖立伟, 张光霞, 景学敏, 周秋香, 冯茹, 有机化学, 2016, 36, 1000. )

    2. [2]

      (a) Yavari, I. ; Nasiri Gheidari, S. ; Mirzaei, A. Chin. Chem. Lett. 2012, 23, 5.
      (b) Satoh, T. ; Sakurada, J. ; Ogino, Y. Tetrahedron Lett. 2005, 46 (29), 4855.

    3. [3]

      (a) Jervis, P. J. ; Graham, L. M. ; Foster, E. L. ; Cox, L. R. ; Porcelli, S. A. ; Besra, G. S. Bioorg. Med. Chem. Lett. 2012, 22, 4348.
      (b) Senadi, G. C. ; Liao, C. -M. ; Kuo, K. -K. ; Lin, J. -C. ; Chang, L. -S. ; Wang, J. -J. ; Hu, W. -P. Med. Chem. Commun. 2016, 7, 1151.
      (c) Li, S. -S. ; Zhong, W. -H. ; Li, Z. -J. ; Meng, X. -B. Eur. J. Med. Chem. 2012, 47, 546.
      (d) Neggers, J. E. ; Vanstreels, E. ; Baloglu, E. ; Shacham, S. ; Landesman, Y. ; Daelemans, D. Oncotarget 2016, 7, 68842.
      (e) Etchin, J. ; Sanda, T. ; Mansour, M. R. ; Kentsis, A. ; Montero, J. ; Le, B. T. ; Christie, A. L. ; McCauley, D. ; Rodig, S. J. ; Kauffman, M. ; Shacham, S. ; Stone, R. ; Letai, A. ; Kung, A. L. Thomas Look, A. Br. J. Haematol. 2013, 161, 117.
      (f) Cheng, Y. ; Wang, H. ; Addla, D. ; Zhou, H. -C. Chin. J. Org. Chem. 2016, 36, 1(in Chinese).
      (程宇, 王辉, Dinesh Addla, 周成合, 有机化学, 2016, 36, 1. )
      (g) Roche, M. ; Bignon, J. ; Brion, J. D. ; Hamze, A. ; Alami, M. J. Org. Chem. 2014, 79, 7583.

    4. [4]

      (a) Nakabayashi, K. ; Umeda, A. ; Sato, Y. ; Mori, H. Polymer 2016, 96, 81.
      (b) Schoelch, S. ; Vapaavuori, J. ; Rollet, F. G. ; Barrett, C. J. Macromol. Rapid Commun. 2017, 38, 1600582.
      (c) Beghdadi, S. ; Miladi, I. A. ; Addis, D. ; Romdhane, H. B. ; Bernard, J. ; Drockenmuller, E. Polym. Chem. 2012, 3, 1680.
      (d) Ting, H. -C. ; Chen, Y. -M. ; You, H. -W. ; Hung, W. -Y. ; Lin, S. -H. ; Chaskar, A. ; Chou, S. -H. ; Chi, Y. ; Liu, R. -H. ; Wong, K. -T. J. Mater. Chem. 2012, 22, 8399.
      (e) Kim, M. ; Jeon, S. K. ; Hwang, S. H. ; Lee, J. Y. Phys. Chem. Chem. Phys. 2015, 17, 13553.

    5. [5]

      (a) Takeda, D. ; Hirano, K. ; Satoh, T. ; Miura, M. Org. Lett. 2013, 15, 1242.
      (b) Lebedev, A. Y. ; Izmer, V. V. ; Kazyul'kin, D. N. ; Beletskaya, I. P. ; Voskoboynikov, A. Z. Org. Lett. 2002, 4, 623.
      (c) Kaase, D. ; Gotzmann, C. ; Rein, S. ; Lan, Y. -H. ; Kacprzak, S. ; Klingele, J. Inorg. Chem. 2014, 53, 5546.
      (d) Movassaghi, M. ; Alison, E. O. J. Org. Chem. 2005, 70, 8638.
      (e) Tsuchimoto, T. ; Aoki, K. ; Wagatsuma, T. ; Suzuki, Y. Eur. J. Org. Chem. 2008, 4035.
      (f) Su, Y. -L. ; Petersen, J. L. ; Gregg, T. L. ; Shi, X. -D. Org. Lett. 2015, 17, 1208.
      (g) Tsuchimoto, T. ; Aoki, K. ; Wagatsuma, T. ; Suzuki, Y. Eur. J. Org. Chem. 2008, 23, 4035;
      (h) Bhanuchandra, M. ; Kuram, M. R. ; Sahoo, A. K. J. Org. Chem. 2013, 78, 11824.
      (i) Vereshchagin, L. I. ; Buzilova, S. R. ; Mityukova, T. K. ; Proidakov, A. G. ; Kizhnyaev, V. N. ; Il'ina, V. V. ; Sukhanov, G. T. ; Gareev, G. A. ; Bogens, A. K. Zh. Prikl. Khim. 1986, 22, 1979.
      (j) Huang, Q. -F. ; Ke, S. -J. ; Qiu, L. ; Zhang, X. -F. ; Lin, S. ChemCatChem 2014, 6, 1531.
      (k) Huang, Q. -F. ; Song, Q. -Q. ; Cai, J. ; Zhang, X. -F. ; Lin, S. Adv. Synth. Catal. 2013, 355, 1512.
      (l) Huang, Q. -F. ; Zhang, X. -Y. ; Qiu, L. ; Wu, J. -J. ; Xiao, H. -B. ; Zhang, X. -F. ; Lin, S. Adv. Synth. Catal. 2015, 357, 3753.
      (m) Zhang, X. -Y. ; Su, L. ; Qiu, L. ; Fan, Z. -W. ; Zhang, X. -F. ; Lin, S. ; Huang, Q. -F. Org. Biomol. Chem. 2017, 15, 3499.

    6. [6]

      (a) Yuan, Z. -H. ; Yang, X. ; Hu, A. ; Yu, C. -P. Chem. Eng. J. 2015, 276, 83.
      (b) Fabrega, J. ; Luoma, S. N. ; Tyler, C. R. ; Galloway, T. S. ; Lead, J. R. Environ. Int. 2011, 37, 517.
      (c) Marziali, L. ; Rosignoli, F. ; Drago, A. ; Pascariello, S. ; Valsecchi, L. ; Rossaro, B. ; Guzzella, L. Sci. Total Environ. 2017, 593, 809.
      (d) Cui, L. ; Wu, J. ; Ju, H. -X. Biosens. Bioelectron. 2015, 63, 276.
      (e) Gumpu, M. B. ; Sethuraman, S. ; Krishnan, U. M. ; Rayappan, J. B. B. Sen. Actuators B 2015, 213, 515.

    7. [7]

      (a) Zhu, X. ; Zhang, H. ; Xu, Y. -J. J. Solution Chem. 2016, 45, 359.
      (b) Wang, T. -T. ; Iou, Q. -L. Chem. Eng. J. 2002, 87, 197.
      (c) Yang, D. -P. ; Li, X. ; Liu, Y. -F. J. Cluster Sci. 2013, 24, 497.

    8. [8]

      Li, W.; Li, J.-C.; Wan, Z.-K.; Wu, J.-J; Massefski, W. Org.Lett. 2007, 9, 4607. doi: 10.1021/ol7021142

    9. [9]

      (a) Casey, M. ; Moody, C. J. ; Rees, C. W. ; Young, R. G. J. Chem. Soc. Pak. 1985, 1, 741.
      (b) Ramazani, A. ; Nasrabadi, F. Z. ; Ślepokura, K. ; Lis, T. ; Joo, S. W. J. Heterocycl. Chem. 2017, 54, 55.

    10. [10]

      Van Neck, T.; Pannecouque, C.; Vanstreels, E.; Stevens, M.; Dehaen, W.; Daelemans, D. Bioorg.Med.Chem. 2008, 16, 9487. doi: 10.1016/j.bmc.2008.09.051

    11. [11]

      Fischer, N. V.; Inayat, A.; Schwieger, W.; Burzlaff, N. J.Coord. Chem. 2010, 63, 2831. doi: 10.1080/00958972.2010.506613

    12. [12]

      Kashima, C.; Yoshiwara, N.; Tajima, T.; Omote, Y. J.Heterocycl. Chem. 1987, 24, 1595. doi: 10.1002/jhet.v24:6

  • Scheme 1  Methods for preparation of N-alkenyl azoles

    Figure 1  Structure of 5-phenyl-1H-tetrazole from single crystal XRD

    Figure 2  Proposed mechanism

    Table 1.  The condition optimization for the metal-free vinylation of 5-phenyl-1H-tetrazolea

    Entry Base Solvent T/℃ Yield a /%
    1 EDA DMSO 25 N.R.
    2 TMEDA DMSO 25 42
    3 Et3N DMSO 25 79
    4 Bu3N DMSO 25 37
    5 BDMA DMSO 25 79
    6 DABCO DMSO 25 78
    7 Urotropine DMSO 25 16
    8 Et3N Ethanol 25 12
    9 Et3N Acetone 25 43
    10 Et3N CH2Cl2 25 34
    11 Et3N 1, 4-Dioxane 25 35
    12 Et3N CH3Ph 25 42
    13 Et3N 25 33
    14 DMSO 25 N.R. b
    15 DMSO 80 N.R.
    16 NMP 80 N.R.
    17 Et3N DMSO 15 45
    18 Et3N DMSO 35 94
    19 Et3N DMSO 80 95
    a Reaction conditions: 1a (0.24 mmol), 2a (0.2 mmol) and base (5 equiv.) in 2 mL of solvent for 2 h; chromtographic yield of 3a; b N.R.: No reaction.
    下载: 导出CSV

    Table 2.  Metal-free N-vinylation of 1H-tetrazoles with 2, 3-dibromopropionatea, b

    下载: 导出CSV

    Table 3.  Metal-freeN-vinylation of azoles with 2, 3-dibromo- propionatea, b

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  989
  • HTML全文浏览量:  93
文章相关
  • 发布日期:  2018-06-01
  • 收稿日期:  2017-10-09
  • 修回日期:  2017-12-18
  • 网络出版日期:  2018-06-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章