无线磁弹性适配体传感器用于检测癌胚抗原

桑胜波 郭星 张益霞 郭锦玉 李红梅 李艳萍 张强 王涛

引用本文: 桑胜波, 郭星, 张益霞, 郭锦玉, 李红梅, 李艳萍, 张强, 王涛. 无线磁弹性适配体传感器用于检测癌胚抗原[J]. 分析化学, 2021, 49(5): 718-725. doi: 10.19756/j.issn.0253-3820.191695 shu
Citation:  SANG Sheng-Bo,  GUO Xing,  ZHANG Yi-Xia,  GUO Jin-Yu,  LI Hong-Mei,  LI Yan-Ping,  ZHANG Qiang,  WANG Tao. A Wireless Magnetoelastic Aptasensor for Detection of Carcinoembryonic Antigen[J]. Chinese Journal of Analytical Chemistry, 2021, 49(5): 718-725. doi: 10.19756/j.issn.0253-3820.191695 shu

无线磁弹性适配体传感器用于检测癌胚抗原

    通讯作者: 郭星,E-mail:guo_xing163@163.com
  • 基金项目:

    国家自然科学基金项目(Nos.51705354,61703298,81602506,51975400)和山西省高等学校科技创新项目(No.2020L0076)资助。

摘要: 在磁弹性芯片表面修饰癌胚抗原适配体(CEA-apt),构建了新型磁弹性适配体传感器,用于癌胚抗原(CEA)的高灵敏无线检测。基于磁致伸缩效应,信号的激发与传输可以通过电磁场进行,可实现无线检测,并用于活体分析。扫描电子显微镜(SEM)、原子力显微镜(AFM)、能谱(EDS)表征结果表明,磁弹性适配体传感器可以特异性结合CEA。在CEA-apt的最佳修饰浓度下,磁弹性适配体传感器的共振频率偏移量与CEA浓度在1~100 ng/mL范围内呈线性关系,检出限为0.09 ng/mL。通过与临床采用的化学发光免疫测定法对比,验证了磁弹性适配体传感器的可行性。磁弹性适配体传感器表现出良好的特异性、稳定性和可重复性,为癌症的临床诊断提供了技术支持。

English


    1. [1]

      CHEN W, ZHENG R, BAADE P D, ZHANG S, ZENG H. CA-Cancer J. Clin., 2016, 66(2):115-132.

    2. [2]

      XIAO K, WANG K, QIN W, HOU Y LU W, XU H, CUI D. Talanta, 2017, 164:463-469.

    3. [3]

      AGGARWAL C, MEROPOL N J, PUNT C J, IANNOTTI N, SAID MAN B H, SABBATH K D, GAD RAIL N Y, PICUS J, MORSE M A, MITCHELL E. Ann. Oncol., 2013, 24(2):420-428.

    4. [4]

      GUO J, YU J, SONG X, MI H. Open Med., 2017, 12:131-137.

    5. [5]

      YANG A P, LIU J, LEI H Y, ZHANG Q W, ZHAO L, YANG G H. Clin. Chim. Acta, 2014, 437:183-186.

    6. [6]

      JÄRVISALO J, HAKAMA M, KNEKT P, STENMAN U H, LEINO A, TEPPO L, MAATELA J, AROMAA A. Cancer, 1993, 71:1982-1988.

    7. [7]

      NARAYAN T, KUMAR S, KUMAR S, AUGUSTINE S, YADAV B K, MALHOTRA B D. Talanta, 2019, 201:465-473.

    8. [8]

      FERRARI M. Nat. Rev. Cancer, 2005, 5:161-171.

    9. [9]

      URVA S R, YANG V C, BALTHASAR J P.J. Immunoassay Immunochem., 2009, 30:418-427.

    10. [10]

      LI M, CUSHING S K, ZHANG J, SURI S, EVANS R, PETROS W P, GIBSON L F, MA D, LIU Y, WU N. ACS Nano, 2013, 7:4967-4976.

    11. [11]

      GU X, SHE Z, MA T, TIAN S, KRAATZ H B. Biosens. Bioelectron., 2018, 102:610-616.

    12. [12]

      WANG Y, DAN Y, ZHANG H, FAN Y, PANG D. Sens. Actuators, B, 2018, 255:125-132.

    13. [13]

      GAO X, ZHANG Y, WU Q, CHEN H, CHEN Z, LIN X. Talanta, 2011, 85:1980-1985.

    14. [14]

      ZHANG X, DING S N. Sens. Actuators, B, 2017, 240:1123-1133.

    15. [15]

      LI H, SHI L, SUN D E, LI P, LIU Z. Biosens. Bioelectron., 2016, 86:791-798.

    16. [16]

      WU K, CHU C, MA C, YANG H, SONG X R, YU J H. Sens. Actuators, B, 2015, 206:43-49.

    17. [17]

      QIU Z, SHU J, TANG D. Chem. Commun., 2018, 54:7199-7202.

    18. [18]

      QIU Z, SHU J, TANG D. Anal. Chem., 2017, 90:1021-1028.

    19. [19]

      ZHOU Q, LIN Y, ZHANG K, LI M, TANG D. Biosens. Bioelectron., 2018, 101:146-152.

    20. [20]

      GUO X, SANG S, GUO J, JIAN A, DUAN Q, JI J, ZHANG Q, ZHANG W. Sci. Rep., 2017, 7:15626.

    21. [21]

      STOYANOV P G, GRIMES C A. Sens. Actuators, A, 2000, 80:8-14.

    22. [22]

      SCHMIDT S, GRIMES C A. Sens. Actuators, A, 2001, 94:189-196.

    23. [23]

      CHEN L, LI J, THANHTHUY T T, ZHOU L, HUANG C, YUAN L, CAI Q. Biosens. Bioelectron., 2014, 52:427-432.

    24. [24]

      LIN H, CHEN Z, LU Q, CAI Q, GRIMES C A. Sens. Actuators, B, 2010, 146:154-159.

    25. [25]

      PARK M K, PARK J W, WIKLE H C, CHIN B A. Sens. Actuators, B, 2013, 176:1134-1140.

    26. [26]

      HIREMATH N, GUNTUPALLI R, VODYANOY V, CHIN B A, PARK M K. Sens. Actuators, B, 2015, 210:129-136.

    27. [27]

      ZHANG Y, GUO X, FAN L, ZHANG Q, SANG S. Nanoscale Res. Lett., 2018, 13:258.

    28. [28]

      YU X, CHEN F, WANG R, LI Y. J. Biotechnol., 2018, 266:39-49.

    29. [29]

      HASHEMI TABAR G, SMITH C. World Appl. Sci. J., 2010, 8.

    30. [30]

      JIANG X, WANG H, WANG H, ZHUO Y, YUAN R, CHAI Y. Anal.Chem., 2017, 89:4280-4286.

    31. [31]

      SETTU K, LIU J T, CHEN C J, TSAI J Z. Anal. Biochem., 2017, 534:99-107.

    32. [32]

      YANG X, ZHUO Y, ZHU S, LUO Y, FENG Y, XU Y. Biosens. Bioelectron., 2015, 64:345-351.

    33. [33]

      SHAHBAZI N, HOSSEINKHANI S, RANJBAR B. Sens. Actuators, B, 2017, 253:794-803.

    34. [34]

      MAHMOUDIAN M, ALIAS Y, BASIRUN W, WOI P M. Electrochim. Acta, 2015, 169:126-133.

    35. [35]

      ZHENG D, XIONG J, GUO P, LI Y, WANG S, CU H. Mater. Res. Bull., 2014, 59:411-415.

    36. [36]

      LI R, FENG F, CHEN Z, BAI Y, CUO F. Talanta, 2015, 140:143-149.

    37. [37]

      SHAHBAZI N, HOSSEINKHANI S, RANJBAR B. Sens. Actuators, B, 2017, 253:794-803.

    38. [38]

      WANG J, CAO F, HE S, XIA Y, LIU X Y, CHEN W W. Talanta, 2018, 176:444-449.

  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  1049
  • HTML全文浏览量:  219
文章相关
  • 收稿日期:  2019-11-25
  • 修回日期:  2020-09-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章