Effects of Functionalized Graphenes on the Isothermal Crystallization of Poly(L-lactide) Nanocomposites

Li-fen Zhao Qi Li Ru-liang Zhang Xiu-juan Tian Lei Liu

Citation:  Li-fen Zhao, Qi Li, Ru-liang Zhang, Xiu-juan Tian, Lei Liu. Effects of Functionalized Graphenes on the Isothermal Crystallization of Poly(L-lactide) Nanocomposites[J]. Chinese Journal of Polymer Science, 2016, 34(1): 111-121. doi: 10.1007/s10118-016-1732-5 shu

Effects of Functionalized Graphenes on the Isothermal Crystallization of Poly(L-lactide) Nanocomposites

    通讯作者: Li-fen Zhao,
  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (Nos. 51503117 and 51403119) and Promotive Research Fund for Excellent Young and Middle-aged Scientisits of Shandong Province (No. BS2013CL032).

摘要: The effects of graphene oxide (GO) with polar groups and functionalized GO (fGO) with nonpolar groups on the isothermal crystallization of poly(L-lactide)(PLLA) were compared. Functionalized GO was obtained by grafting octadecylamine and characterized by FTIR, WAXD and TGA. Isothermal crystallization kinetics of PLLA/GO and PLLA/fGO nanocomposites were investigated by combining DSC data and Avrami equation. The results showed that fGO could improve PLLA crystallization rate more obviously than GO. By analyzing the morphology obtained from POM, SEM and TEM, it was found fGO with large layer space dispersed better in PLLA and supplied more nucleation sites than GO. Therefore, for the multilayer graphene, increasing the layer spaces is important to improve its dispersion in polymers, which will cause the crystal kinetics changing of polymers.

English

  • 
    1. [1]

      Rasal, R.M., Janorkar, A.V. and Hirt, D.E., Prog. Polym. Sci., 2010, 35:338

    2. [2]

      Martin, O. and Averous, L., Polymer, 2001, 42:6209

    3. [3]

      Jacobsen, S. and Fritz, H.G., Polym. Eng. Sci., 1999, 39:1303

    4. [4]

      Kasuga, T., Ota, Y., Nogami, M. and Abe, Y., Biomaterials, 2001, 22:19

    5. [5]

      Matsumoto, M., Chosa, E., Nabeshima, K., Shikinami, Y. and Tajima, N., J. Biomed. Mater. Res., 2002, 60:101

    6. [6]

      Ray, S.S., Maiti, P., Okamoto, M., Yamada, K. and Ueda, K., Macromolecules, 2002, 35:3104

    7. [7]

      Maiti, P., Yamada, K., Okamoto, M., Ueda, K. and Okamoto, K., Chem. Mater., 2002, 14:4654

    8. [8]

      Zhang, D., Kandadai, M.A., Cech, J., Roth, S. and Curran, S., J. Phys. Chem. B., 2006, 110:12910

    9. [9]

      Allen, M.J., Tung, V.C. and Kaner, R.B., Chem. Rev., 2010, 110:132

    10. [10]

      Geim, A. and Novoselov, K., Nat. Mater., 2007, 6:183

    11. [11]

      Kim, H. Abdala, A.A. and Macosko, C.W., Macromolecules, 2010, 43:6515

    12. [12]

      Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S. and Lee, J., Prog. Polym. Sci., 2010, 35:1350

    13. [13]

      Potts, J.R., Dreyer, D.R., Bielawski, C.W. and Ruoff, R.S., Polymer, 2011, 52:5

    14. [14]

      Kim, H. and Jeong, Y.G., J. Polym. Sci., Part B:Polym. Phys., 2010, 48:850

    15. [15]

      Chen, Y., Yao, X., Zhou, X., Pan, Z. and Gu, Q., J. Nanosci. Nanotechnol., 2011, 11:7813

    16. [16]

      Zhao, L., Liu, X., Zhang, R., He, H., Jin, T. and Zhang, J., J. Macromol. Sci. B., 2015, 54:45

    17. [17]

      Stankovich, S., Piner, R.D., Nguyen, S.B.T. and Ruoff. R.S., Carbon, 2006, 44:3342

    18. [18]

      Wang, X., Yang, J., Li, J. and Wan, L., Chem. Phys. Lett., 2013, 570:125

    19. [19]

      Yang, X., Mei, T., Yang, J., Zhang, C., Lv, M. and Wang. X., Appl. Surf. Sci., 2014, 305:725

    20. [20]

      Liang, Y., Tang, H., Zhong, G. and Li, Z., Chinese J. Polym. Sci., 2014, 32(9):1176

    21. [21]

      Zhao, L., Cheng, J., Tian, X. and Zhang, R., Chinese J. Polym. Sci., 2015, 33(3):499

    22. [22]

      Shi, J., Lu, X., Li, H. and Li, D., J. Therm. Anal. Calorim., 2014, 117:1385

    23. [23]

      Xu, J., Chen, T., Yang, C., Li, Z., Mao, Y., Zeng, B. and Hsiao, B.S., Macromolecules, 2010, 43:5000

    24. [24]

      Wang, H. and Qiu, Z., Thermochim. Acta, 2011, 526:229

    25. [25]

      Wang, H. and Qiu, Z., Thermochim. Acta, 2012, 527:40

    26. [26]

      Manafi, P., Ghasemi, I., Karrabi, M., Azizi., H. and Ehsaninamin, P., Soft Matter, 2014, 4:433

    27. [27]

      Hummers, W.S. and Offeman, R.E., J. Am. Chem. Soc., 1958, 80:1339

    28. [28]

      Zhou, X. and Liu, Z., Chem. Commun., 2010, 46:2611

    29. [29]

      Etmimi, H.M., Tonge, M.P. and Sanderson, R.D., J. Polym. Sci., Part A:Polym. Chem., 2011, 49:1621

    30. [30]

      Avrami, M., J. Chem. Phys., 1940, 8:212

    31. [31]

      Avrami, M., J. Chem. Phys., 1941, 9:177

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1057
  • HTML全文浏览量:  4
文章相关
  • 发布日期:  2016-01-05
  • 收稿日期:  2015-07-19
  • 修回日期:  2015-09-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章