大气压辉光放电结合圆柱约束增强激光诱导击穿光谱应用于土壤中稀土元素的检测

李悦 张国霞 蔡朝晴 邱汉迅 汪正

引用本文: 李悦, 张国霞, 蔡朝晴, 邱汉迅, 汪正. 大气压辉光放电结合圆柱约束增强激光诱导击穿光谱应用于土壤中稀土元素的检测[J]. 分析化学, 2022, 50(9): 1384-1390. doi: 10.19756/j.issn.0253-3820.221100 shu
Citation:  LI Yue,  ZHANG Guo-Xia,  CAI Zhao-Qing,  QIU Han-Xun,  WANG Zheng. Atmospheric Pressure Glow Discharge Combined with Cylindrical Confinement Enhanced Laser-Induced Breakdown Spectroscopy for Determination of Rare Earth in Soil[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1384-1390. doi: 10.19756/j.issn.0253-3820.221100 shu

大气压辉光放电结合圆柱约束增强激光诱导击穿光谱应用于土壤中稀土元素的检测

    通讯作者: 邱汉迅,E-mail:hxqiu@usst.edu.cn; 汪正,E-mail:wangzheng@mail.sic.ac.cn
  • 基金项目:

    国家自然科学基金项目(No.E27GJ616)、中国科学院仪器设备功能开发技术创新项目(No.E07YQ7170G)和上海市无机材料测试与表征技术平台项目(No.19DZ2290700)资助。

摘要: 土壤中的稀土污染会影响植物生长并通过食物链在动物和人类体内富集,引发环境问题,危害人类健康,因此有必要对土壤中稀土元素的含量进行检测。激光诱导击穿光谱(Laser-induced breakdown spectroscopy,LIBS)在土壤等固体样品分析方面具有原位、无损、实时及多元素同步分析等优势,但该技术的检测灵敏度无法满足痕量元素定量分析的要求。本研究采用大气压辉光放电(Atmospheric pressure glow discharge,APGD)和圆柱约束(Cylindrical confinement,CC)相结合的方法,提高LIBS的检测灵敏度,并将其应用于土壤中稀土元素(Y、La、Eu、Yb和Lu)的检测。结果表明,APGD和CC将LIBS对Y、La、Eu、Yb和Lu元素的检测灵敏度分别提升了11.6、9.3、7.9、8.2和7.6倍。将所构建系统应用于土壤标准物质和未知土壤样品的分析,测得标准样品及未知土壤样品中Y、La、Eu、Yb和Lu元素的含量与ICP-OES测量值的相对误差分别为1.5%~8.6%和1.8%~7.0%,表明所构建系统具有良好的准确度。

English


    1. [1]

      WANG L Q, LIANG T. Sci. Rep., 2015, 5:12483.WANG L Q, LIANG T. Sci. Rep., 2015, 5:12483.

    2. [2]

      GOODENOUGH K M, WALL F, MERRIMAN D. Nat. Resour. Res., 2018, 27(2):201-216.GOODENOUGH K M, WALL F, MERRIMAN D. Nat. Resour. Res., 2018, 27(2):201-216.

    3. [3]

      DINALI G S, ROOT R A, AMISTADI M K, CHOROVER J, LOPES G, GUILHERME L R G. Environ. Int., 2019, 128:279-291.DINALI G S, ROOT R A, AMISTADI M K, CHOROVER J, LOPES G, GUILHERME L R G. Environ. Int., 2019, 128:279-291.

    4. [4]

      SABBIONI E, PIETRA R, GAGLIONE P, VOCATURO G, COLOMBO F, ZANONI M, RODI F. Sci. Total Environ., 1982, 26(1):19-32.SABBIONI E, PIETRA R, GAGLIONE P, VOCATURO G, COLOMBO F, ZANONI M, RODI F. Sci. Total Environ., 1982, 26(1):19-32.

    5. [5]

      DOLEGOWSKA S, MIGASZEWSKI Z M. Environ. Pollut., 2013, 178:33-40.DOLEGOWSKA S, MIGASZEWSKI Z M. Environ. Pollut., 2013, 178:33-40.

    6. [6]

      CHEN H B, CHEN Z B, CHEN Z Q, OU X L, CHEN J J. Bull. Environ. Contam. Toxicol., 2020, 104(5):582-587.CHEN H B, CHEN Z B, CHEN Z Q, OU X L, CHEN J J. Bull. Environ. Contam. Toxicol., 2020, 104(5):582-587.

    7. [7]

      LI X F, CHEN Z B, CHEN Z Q, ZHANG Y H. Chemosphere, 2013, 93(6):1240-1246.LI X F, CHEN Z B, CHEN Z Q, ZHANG Y H. Chemosphere, 2013, 93(6):1240-1246.

    8. [8]

      GWENZI W, MANGORI L, DANHA C, CHAUKURA N, DUNJANA N, SANGANYADO E. Sci. Total Environ., 2018, 636:299-313.GWENZI W, MANGORI L, DANHA C, CHAUKURA N, DUNJANA N, SANGANYADO E. Sci. Total Environ., 2018, 636:299-313.

    9. [9]

      WANG Zhe, ZHAO Ying-Chen, LUO Yi-Fei, ZHENG Chun-Li, BIAN Yuan, ZHANG Guang-Yu. Environ. Sci., 2021, 42(3):1503-1513. 王哲, 赵莹晨, 骆逸飞, 郑春丽, 卞园, 张光宇. 环境科学, 2021, 42(3):1503-1513.

    10. [10]

      MOOR C, LYMBEROPOULOU T, DIETRICH V J. Microchim. Acta, 2001, 136(3-4):123-128.MOOR C, LYMBEROPOULOU T, DIETRICH V J. Microchim. Acta, 2001, 136(3-4):123-128.

    11. [11]

      LI F, XU L, YOU T Y, LU A X. Comput. Electron. Agric., 2021, 187:106257.LI F, XU L, YOU T Y, LU A X. Comput. Electron. Agric., 2021, 187:106257.

    12. [12]

      WANG F, ZHANG G. Appl. Spectrosc., 2011, 65(3):315-319.WANG F, ZHANG G. Appl. Spectrosc., 2011, 65(3):315-319.

    13. [13]

      LI Mao-Gang, LIANG Jing, YAN Chun-Hua, TANG Hong-Sheng, ZHANG Tian-Long, LI Hua. Chin. J. Anal. Chem., 2021, 49(8):1410-1418. 李茂刚, 梁晶, 闫春华, 汤宏胜, 张天龙, 李华. 分析化学, 2021, 49(8):1410-1418.

    14. [14]

      SUN Lan-Xiang, WANG Wei, TIAN Xue-Yong, ZHANG Peng, QI Li-Feng, ZHENG Li-Ming. Chin. J. Anal. Chem., 2018, 46(10):1518-1527. 孙兰香, 汪为, 田雪咏, 张鹏, 齐立峰, 郑黎明. 分析化学, 2018, 46(10):1518-1527.

    15. [15]

      HAHN D W, OMENETTO N. Appl. Spectrosc., 2012, 66(4):347-419.HAHN D W, OMENETTO N. Appl. Spectrosc., 2012, 66(4):347-419.

    16. [16]

      DE LUCIA F C, GOTTFRIED J L, MUNSON C A, MIZIOLEK A W. Spectrochim. Acta, Part B, 2007, 62(12):1399-1404.DE LUCIA F C, GOTTFRIED J L, MUNSON C A, MIZIOLEK A W. Spectrochim. Acta, Part B, 2007, 62(12):1399-1404.

    17. [17]

      HASSANIMATIN M M, TAVASSOLI S H, NOSRATI Y, SAFI A. Phys. Plasmas, 2019, 26(3):033303.HASSANIMATIN M M, TAVASSOLI S H, NOSRATI Y, SAFI A. Phys. Plasmas, 2019, 26(3):033303.

    18. [18]

      LIU Y, BOUSQUET B, BAUDELET M, RICHARDSON M. Spectrochim. Acta, Part B, 2012, 73:89-92.LIU Y, BOUSQUET B, BAUDELET M, RICHARDSON M. Spectrochim. Acta, Part B, 2012, 73:89-92.

    19. [19]

      POPOV A M, COLAO F, FANTONI R. J. Anal. At. Spectrom., 2009, 24(5):602-604.POPOV A M, COLAO F, FANTONI R. J. Anal. At. Spectrom., 2009, 24(5):602-604.

    20. [20]

      LI Y, HU C H, ZHANG H Z, JIANG Z K, LI Z S. Appl. Opt., 2009, 48(4):B105-B110.LI Y, HU C H, ZHANG H Z, JIANG Z K, LI Z S. Appl. Opt., 2009, 48(4):B105-B110.

    21. [21]

      DELL'AGLIO M, ALRIFAI R, DE GIACOMO A. Spectrochim. Acta, Part B, 2018, 148:105-112.DELL'AGLIO M, ALRIFAI R, DE GIACOMO A. Spectrochim. Acta, Part B, 2018, 148:105-112.

    22. [22]

      TAVASSOLI S H, KHALAJI M. J. Appl. Phys., 2008, 103(8):083118.TAVASSOLI S H, KHALAJI M. J. Appl. Phys., 2008, 103(8):083118.

    23. [23]

      PENG X X, WANG Z. Anal. Chem., 2019, 91(15):10073-10080.PENG X X, WANG Z. Anal. Chem., 2019, 91(15):10073-10080.

    24. [24]

      DENG Q S, YANG C, ZHENG H T, LIU J X, MAO X F, HU S H, ZHU Z L. J. Anal. At. Spectrom., 2019, 34(9):1786-1793.DENG Q S, YANG C, ZHENG H T, LIU J X, MAO X F, HU S H, ZHU Z L. J. Anal. At. Spectrom., 2019, 34(9):1786-1793.

    25. [25]

      HE J, LIU Y B, PAN C Y, DU X W. Appl. Spectrosc., 2019, 73(10):1201-1207.HE J, LIU Y B, PAN C Y, DU X W. Appl. Spectrosc., 2019, 73(10):1201-1207.

    26. [26]

      ZHU Z L, YANG C, YU P W, ZHENG H T, LIU Z F, XING Z, HU S H. J. Anal. At. Spectrom., 2019, 34(2):331-337.ZHU Z L, YANG C, YU P W, ZHENG H T, LIU Z F, XING Z, HU S H. J. Anal. At. Spectrom., 2019, 34(2):331-337.

    27. [27]

      QIAN L, LEI Z, PENG X, YANG G, WANG Z. Anal. Chim. Acta, 2021, 1162:338495.QIAN L, LEI Z, PENG X, YANG G, WANG Z. Anal. Chim. Acta, 2021, 1162:338495.

    28. [28]

      GE F, GAO L, PENG X, LI Q, ZHU Y, YU J, WANG Z. Talanta, 2020, 218:121119.GE F, GAO L, PENG X, LI Q, ZHU Y, YU J, WANG Z. Talanta, 2020, 218:121119.

    29. [29]

      CARADO A J, QUARLES C D, DUFFIN A M, BARINAGA C J, RUSSO R E, MARCUS R K, EIDEN G C, KOPPENAAL D W. J. Anal. At. Spectrom., 2012, 27(3):385-389.CARADO A J, QUARLES C D, DUFFIN A M, BARINAGA C J, RUSSO R E, MARCUS R K, EIDEN G C, KOPPENAAL D W. J. Anal. At. Spectrom., 2012, 27(3):385-389.

    30. [30]

      REN L, HAO X J, TANG H J, SUN Y K. Results Phys., 2019, 15:102798.REN L, HAO X J, TANG H J, SUN Y K. Results Phys., 2019, 15:102798.

    31. [31]

      WANG Z, HOU Z Y, LUI S L, JIANG D, LIU J M, LI Z. Opt. Express, 2012, 20(23):A1011-A1018.WANG Z, HOU Z Y, LUI S L, JIANG D, LIU J M, LI Z. Opt. Express, 2012, 20(23):A1011-A1018.

  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  430
  • HTML全文浏览量:  17
文章相关
  • 收稿日期:  2022-02-25
  • 修回日期:  2022-05-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章