π-π作用下的VOPc/g-C3N4用于有效提升可见光光催化制氢性能

刘亚男 马柳波 申丛丛 王昕 周霄 赵志伟 徐安武

引用本文: 刘亚男,  马柳波,  申丛丛,  王昕,  周霄,  赵志伟,  徐安武. π-π作用下的VOPc/g-C3N4用于有效提升可见光光催化制氢性能[J]. 催化学报, 2019, 40(2): 168-176. doi: 10.1016/S1872-2067(18)63191-2 shu
Citation:  Yanan Liu,  Liubo Ma,  Congcong Shen,  Xin Wang,  Xiao Zhou,  Zhiwei Zhao,  Anwu Xu. Highly enhanced visible-light photocatalytic hydrogen evolution on g-C3N4 decorated with vopc through π-π interaction[J]. Chinese Journal of Catalysis, 2019, 40(2): 168-176. doi: 10.1016/S1872-2067(18)63191-2 shu

π-π作用下的VOPc/g-C3N4用于有效提升可见光光催化制氢性能

  • 基金项目:

    国家自然科学基金(51572253,21771171);合肥国家同步辐射实验室科研基金(UN2017LHJJ);中央高校基础研究基金,国家自然科学基金委员会与荷兰合作的特别资助(51561135011).

摘要: 近年来,随着全球科学技术的进步和工业的不断发展,人们的经济生活水平有了极大的提高,但同时也造成能源短缺和环境污染问题,成为21世纪制约经济和社会进一步发展的严重瓶颈,因此开发和研究环保和可再生的绿色能源技术是一项紧迫任务.自首次报道用二氧化钛为电极、采用光电化学分解水制氢之后,光催化分解水制氢引起了人们极大的兴趣,并被认为是缓解全球能源问题的最有希望的解决方案之一.其中,实现有效的太阳能制氢生产中最关键因素是设计稳定、高效和经济的光催化剂,并且能够利用可见光区进行工作(入射到地球上46%的太阳光谱是可见光).聚合物石墨相氮化物(g-C3N4)作为一种对可见光响应的新型无机非金属半导体光催化剂,被认为是一种"可持续"有机半导体材料,目前已并被广泛应用于各种光催化反应中.但是由于其光生电子-空穴在动力学上具有相对较大的复合速率,单纯g-C3N4的光催化活性远远达不到人们的要求.因此,应该尽可能的提高电荷转移动力学来抑制g-C3N4中光生电荷的复合,从而提高光生电荷从g-C3N4转移至反应位点的迁移速率.在前期研究的基础上,本文利用钒氧酞菁(VOPc)分子通过π-π相互作用以修饰g-C3N4的表面和电子结构,从而提高其光生电子-空穴的分离效率,最终极大提升其可见光光催化制氢性能.
本文采用紫外可见光谱(UV-vis),高分辨透射电镜(HRTEM),傅里叶变换红外光谱(FT-IR),X-射线能谱(XPS),稳态光致发光光谱(PL),时间分辨光致发光光谱(TRPL),光电流和阻抗等一系列表征手段研究了VOPc/g-C3N4(VOPc/CN)复合催化剂的结构和性质.FT-IR,XPS及mapping等结果表明,VOPc分子已经成功引入到g-C3N4表面且未对其晶相、电子结构及其纳米片结构产生显著影响;UV-vis结果显示,VOPc分子成功引入并通过非共价键的π-π作用连接.总之,引入VOPc分子即拓展了催化剂对可见光的响应区域,又有利于光生载流子的传递和光生电子-空穴对的有效分离.当引入4 wt%的VOPc分子时,VOPc/CN复合光催化剂的产氢速率增加至65.52μmol h-1,420nm处的量子效率高达6.29%,是单纯g-C3N4的6倍.此外,该催化剂在可见光下连续照射反应20h后,其光催化活性几乎没有降低,表现出良好的光化学稳定性.由于两者LUMO和HOMO轨道之间的良好匹配,在光催化过程中光生电子-空穴在VOPc和g-C3N4之间实现了空间分离,有效阻止了光生电子-空穴对的复合,因而g-C3N4光催化制氢性能显著提升.
同时对比了利用NiS和NiPx做助剂的g-C3N4的可见光光催化制氢性能.结果显示,VOPc/CN复合光催化剂具有较好的光催化性能.总之,本文通过一种简单、经济、有效的方法将两种新兴的功能材料有机地复合在一起,用于可见光照射下高效光催化制氢,为以后合理地开发用于太阳能转换的更为高效经济的材料提供了一个新的思路.

English

    1. [1] J. X. Low, J. G. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Adv. Ma-ter., 2017, 29, 1601694.

    2. [2] J. W. Fu, J. G. Yu, C. J. Jiang, B. Cheng, Adv. Energy Mater., 2018, 8, 1701503.

    3. [3] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38.

    4. [4] R. M. Navarro, M. C. Alvarez-Galván, J. A. Villoria de la Mano, S. M. Al-Zahrani, J. L. G. Fierro, Energy Environ. Sci., 2010, 3, 1865-1882.

    5. [5] S. Z. Hu, F. Y. Li, Z. P. Fan, J. Z. Gui, J. Power Sources, 2014, 250, 30-39.

    6. [6] H. L. Guo, H. Du, Y. F. Jiang, N. Jiang, C. C. Shen, X. Zhou, Y. N. Liu, A. W. Xu, J. Phys. Chem. C, 2017, 121, 107-114.

    7. [7] L. Jia, D. H. Wang, Y. X. Huang, A. W. Xu, H. Q. Yu, J. Phys. Chem. C, 2011, 115, 11466-11473.

    8. [8] F. Andrew Frame, E. C. Carroll, D. S. Larsen, M. Sarahan, N. D. Browning, F. E. Osterloh, Chem. Commun., 2008, 2206-2208.

    9. [9] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carls-son, K. Domen, M. Antonietti, Nat. Mater., 2009, 8, 76-80.

    10. [10] J. Q. Wen, J. Xie, X. B. Chen, X. Li, Appl. Surf. Sci., 2017, 391, 72-123.

    11. [11] Y. G. Wang, X. Bai, H. F. Qin, F. Wang, Y. G. Li, X. Li, S. F. Kang, Y. H. Zuo, L. F. Cui, ACS Appl. Mater. Interfaces, 2016, 8, 17212-17219.

    12. [12] W. T. Wu, J. Q. Zhang, W. Y. Fan, Z. T. Li, L. Z. Wang, X. M. Li, Y. Wang, R. Q. Wang, J. T. Zheng, M. B. Wu, H. B. Zeng, ACS Catal., 2016, 6, 3365-3371.

    13. [13] J. Y. Qin, H. P. Zeng, Appl. Catal. B, 2017, 209, 161-173.

    14. [14] Q. L. Xu, C. J. Jiang, B. Cheng, J. G. Yu, Dalton Trans., 2017, 46, 10611-10619.

    15. [15] F. Chen, H. Yang, X. F. Wang, H. G. Yu, Chin. J. Catal., 2017, 38, 296-304.

    16. [16] J. Liu, N. Y. Liu, H. Li, L. P. Wang, X. Q. Wu, H. Huang, Y. Liu, F. Bao, Y. Lifshitz, S.-T. Lee, Z. H. Kang, Nanoscale, 2016, 8, 11956-11961.

    17. [17] J. H. Liu, S. Y. Xie, Z. B. Geng, K. K. Huang, L. Fan, W. L. Zhou, L. X. Qiu, D. L. Gao, L. Ji, L. M. Duan, L. H. Lu, W. F. Li, S. Z. Bai, Z. R. Liu, W. Chen, S. H. Feng, Y. G. Zhang, Nano Lett., 2016, 16, 6568-6575.

    18. [18] N. Li, J. Zhou, Z. Q. Sheng, W. Xiao, Appl. Surf. Sci., 2018, 430, 218-224.

    19. [19] W. L. Yu, J. X. Chen, T. T. Shang, L. F. Chen, L. Gu, T. Y. Peng, Appl. Catal. B, 2017, 219, 693-704.

    20. [20] K. L. He, J. Xie, M. L. Li, X. Li, Appl. Surf. Sci., 2018, 430, 208-217.

    21. [21] J. Q. Wen, J. Xie, R. C. Shen, X. Li, X. Y. Luo, H. D. Zhang, A. P. Zhang, G. C. Bi, Dalton Trans., 2017, 46, 1794-1802.

    22. [22] R. C. Shen, J. Xie, H. D. Zhang, A. P. Zhang, X. B. Chen, X. Li, ACS Sustainable Chem. Eng., 2017, 6, 816-826.

    23. [23] K. L. He, J. Xie, X. Y. Luo, J. Q. Wen, S. Ma, X. Li, Y. P. Fang, X. C. Zhang, Chin. J. Catal., 2017, 38, 240-252.

    24. [24] Y. P. Zhu, T. Z. Ren, Z. Y. Yuan, ACS Appl. Mater. Interfaces, 2015, 7, 16850-16856.

    25. [25] Y. Oh, J. O. Hwang, E. S. Lee, M. Yoon, V. D. Le, Y. H. Kim, D. H. Kim, S. O. Kim, ACS Appl. Mater. Interfaces, 2016, 8, 25438-25443.

    26. [26] J. Jiang, S. W. Cao, C. L. Hu, C. H. Chen, Chin. J. Catal., 2017, 38, 1981-1989.

    27. [27] R. Kuriki, M. Yamamoto, K. Higuchi, Y. Yamamoto, M. Akatsuka, D. L. Lu, S. Yagi, T. Yoshida, O. Ishitani, K. Maeda, Angew. Chem. Int. Ed., 2017, 56, 4867-4871.

    28. [28] X. Q. Fan, L. X. Zhang, R. L. Cheng, M. Wang, M. L. Li, Y. J. Zhou, J. L. Shi, ACS Catal., 2015, 5, 5008-5015.

    29. [29] F. Chen, H. Yang, W. Luo, P. Wang, H. G. Yu, Chin. J. Catal., 2017, 38, 1990-1998.

    30. [30] L. Zhang, Q. Q. Liu, Y. Y. Chai, J. Ren, W. L. Dai, Appl. Surf. Sci., 2018, 430, 316-324.

    31. [31] X. H. Zhang, L. J. Yu, C. S. Zhuang, T. Y. Peng, R. J. Li, X. G. Li, ACS Catal., 2014, 4, 162-170.

    32. [32] Z. Xing, Z. G. Chen, X. Zong, L. Z. Wang, Chem. Commun., 2014, 50, 6762-6764.

    33. [33] Y. N. Liu, C. C. Shen, N. Jiang, Z. W. Zhao, X. Zhou, S. J. Zhao, A. W. Xu, ACS Catal., 2017, 7, 8228-8234.

    34. [34] Y. N. Liu, X. Zhou, C. C. Shen, Z. W. Zhao, Y. F. Jiang, L. B. Ma, X. X. Fang, A. Zeb, T. Y. Cheang, A. W. Xu, Catal. Sci. Technol., 2018, 8, 2853-2859.

    35. [35] Y. R. Peng, H. Zhang, H. L. Wu, B. Q. Huang, L. Gan, Z. Chen, Dyes Pigm., 2010, 87, 10-16.

    36. [36] M. A. Garcia-Sanchez, A. Campero, Polyhedron, 2000, 19, 2383-2386.

    37. [37] W. Y. Lu, T. F. Xu, Y. Wang, H. G. Hu, N. Li, X. M. Jiang, W. X. Chen, Appl. Catal. B, 2016, 180, 20-28.

    38. [38] K. Takanabe, K. Kamata, X. C. Wang, M. Antonietti, J. Kubota, K. Domen, Phys. Chem. Chem. Phys., 2010, 12, 13020-13025.

    39. [39] X. H. Zhang, L. J. Yu, R. J. Li, T. Y. Peng, X. G. Li, Catal. Sci. Technol., 2014, 4, 3251-3260.

    40. [40] W. G. Xie, X. M. Wang, J. B. Xu, J. Phys. Chem. C, 2012, 116, 17580-17585.

    41. [41] D. M. Chen, K. W. Wang, W. Z. Hong, R. L. Zong, W. Q. Yao, Y. F. Zhu, Appl. Catal. B, 2015, 166-167, 366-373.

    42. [42] Y. X. Xu, L. Zhao, H. Bai, W. J. Hong, C. Li, G. Q. Shi, J. Am. Chem. Soc., 2009, 131, 13490-13479.

    43. [43] P. Zhang, T. Wang, X. X. Chang, J. L. Gong, Acc. Chem. Res., 2016, 49, 911-921.

    44. [44] S. F. Chen, L. Ji, W. M. Tang, X. L. Fu, Dalton Trans., 2013, 42, 10759-10768.

    45. [45] T. Hisatomi, K. Takanabe, K. Domen, Catal. Lett., 2015, 145, 95-108.

    46. [46] R. Q. Ye, H. B. Fang, Y. Z. Zheng, N. Li, Y. Wang, X. Tao, ACS Appl. Mater. Interfaces, 2016, 8, 13879-13889.

    47. [47] W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev., 2016, 116, 7159-7329.

    48. [48] L. Ge, C. C. Han, J. Liu, J. Mater. Chem., 2012, 22, 11843-11850.

    49. [49] X. L. Yin, L. L. Li, W. J. Jiang, Y. Zhang, X. Zhang, L. J. Wan, J. S. Hu, ACS Appl. Mater. Interfaces, 2016, 8, 15258-15266.

    50. [50] Y. Sui, J. H. Liu, Y. W. Zhang, X. K. Tian, W. Chen, Nanoscale, 2013, 5, 9150-9155.

    51. [51] S. X. Ouyang, J. H. Ye, J. Am. Chem. Soc., 2011, 133, 7757-7763.

    52. [52] Y. Y. Kang, Y. Q. Yang, L. C. Yin, X. D. Kang, G. Liu, H. M. Cheng, Adv. Mater., 2015, 27, 4572-4577.

    53. [53] P. Ye, X. L. Liu, J. Iocozzia, Y. P. Yuan, L. N. Gu, G. S. Xu, Z. Q. Lin, J. Mater. Chem. A, 2017, 5, 8493-8498.

    54. [54] D. E. Barlow, K. W. Hipps, J. Phys. Chem. B, 2000, 104, 5993-6000.

    55. [55] S. W. Cao, J. X. Low, J. G. Yu, M. Jaroniec, Adv. Mater., 2015, 27, 2150-2176.

  • 加载中
计量
  • PDF下载量:  4
  • 文章访问数:  860
  • HTML全文浏览量:  72
文章相关
  • 收稿日期:  2018-09-13
  • 修回日期:  2018-10-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章