
Citation: Ruxia Yi, Leilei Qian, Boshun Wan. Synthesis of spiropyrrolidine oxindoles through Rh(II)-catalyzed olefination/cyclization of diazooxindoles and vinyl azides[J]. Chinese Journal of Catalysis, 2019, 40(2): 177-183. doi: 10.1016/S1872-2067(18)63200-0

Rh(II)催化3-重氮吲哚酮与烯基叠氮的烯化/环化反应合成螺吡咯啉吲哚酮
烯基叠氮同时含有叠氮和烯基两个单元,被广泛应用于构建氮杂环.另一方面,重氮化合物被广泛用作偶联环化合成的底物.基于在叠氮化学和杂环合成方面的工作,我们设想利用3-重氮吲哚-2-酮和烯基氮的环化反应构建螺吲哚酮化合物.文献中有关烯基叠氮和重氮化合物反应的报道较少,主要涉及铑催化的环丙烷化和铜催化的环戊烯合成,在这些反应中烯基叠氮作为二元合成子参与反应,而其它类型的反应鲜有报道,因此我们设想利用烯基叠氮作为三元合成子来参与反应成环.在我们开展工作的同时,Katukojvala小组率先发表了铑催化的重氮烯和烯基叠氮的环化反应构建1-吡咯啉.
本文报道了3-重氮吲哚酮和烯基叠氮在铑催化下发生[1+1+3]环化,构建一系列螺吡咯啉吲哚酮化合物.研究从反应条件优化开始,通过对催化剂、原料比、溶剂和温度等参数的筛选,确定了最佳反应条件为1a/2a(1/7),Rh2(TFA)4(2.5 mol%),1,2-二氯乙烷(0.1 mol/L),60℃.在标准条件下完成了21个不同基团取代的螺吡咯啉吲哚酮化合物的合成,最高收率可达91%,证实了该反应的普适性.当重氮底物的N原子上不含取代基或取代基为甲基、苄基、苯基、苯甲酰基和磺酰基时,反应均可以顺利发生,其中苯甲酰基和对甲苯磺酰基取代的底物的反应可取得90%以上的收率.对于重氮和烯基叠氮底物的苯环上含有卤素、甲基和甲氧基等取代基时,反应同样可以顺利进行,以中等收率得到对应产物,电子效应对反应效果影响不大,而存在位阻效应时反应收率略有降低.当降低反应温度或缩短反应时间,可以从反应体系中同时分离得到螺吡咯啉吲哚酮和重氮底物3位乙烯基化的产物.进一步实验表明,3-烯基吲哚酮可以在标准条件下与烯基叠氮反应,以中等收率得到模板产物.该对照实验表明3-烯基吲哚酮是反应过程中的关键中间体.该反应条件温和,简单高效,底物适用范围广,为构建具有潜在生物活性的螺吲哚酮骨架提供了新的选择.
English
Synthesis of spiropyrrolidine oxindoles through Rh(II)-catalyzed olefination/cyclization of diazooxindoles and vinyl azides
-
Key words:
- Rhodium catalyst
- / Vinyl azides
- / Diazo compounds
- / Spiropyrrolidine oxindoles
- / Olefination
- / [1+1+3] annulation
-
-
[1] R. Rios, Chem. Soc. Rev., 2012, 41, 1060-1074.
-
[2] C. Marti, E. M. Carreira, Eur. J. Org. Chem., 2003, 2209-2219.
-
[3] C. V. Galliford, K. A. Scheidt, Angew. Chem. Int. Ed., 2007, 46, 8748-8758.
-
[4] J. H. Lu, J. Q. Tan, S. S. K. Durairajan, L. F. Liu, Z. H. Zhang, L. Ma, H. M. Shen, H. Y. E. Chan, M. Li, Autophagy, 2012, 8, 98-108.
-
[5] G. G. Cheng, Y. L. Zhao, Y. Zhang, P. K. Lunga, D. B. Hu, Y. Li, J. Gu, C. W. Song, W. B. Sun, Y. P. Liu, X. D. Luo, Tetrahedron, 2014, 70, 8723-8729.
-
[6] H. J. Cong, Q. Zhao, S. W. Zhang, J. J. Wei, W. Q. Wang, L. J. Xuan, Phytochemistry, 2014, 100, 76-85.
-
[7] Y. Arun, K. Saranraj, C. Balachandran, P. T. Perumal, Eur. J. Med. Chem., 2014, 74, 50-64.
-
[8] A. V. Velikorodov, V. A. Ionova, O.V. Degtyarev, L. T. Sukhenko, Pharm. Chem. J., 2013, 46, 715-719.
-
[9] K. Ding, Z. Han, Z. Wang, Chem. Asian J., 2009, 4, 32-41.
-
[10] N. R. Ball-Jones, J. J. Badillo, A. K. Franz, Org. Biomol. Chem., 2012, 10, 5165-5181.
-
[11] G. S. Singh, Z. Y. Desta, Chem. Rev., 2012, 112, 6104-6155.
-
[12] L. Hong, R. Wang, Adv. Synth. Catal., 2013, 355, 1023-1052.
-
[13] F. Shi, Z. L. Tao, S. W. Luo, S. J. Tu, L. Z. Gong, Chem. Eur. J., 2012, 18, 6885-6894.
-
[14] R. Rajesh, R. Raghunathan, Eur. J. Org. Chem., 2013, 2013, 2597-2607.
-
[15] K. Suman, L. Srinu, S. Thennarasu, Org. Lett., 2014, 16, 3732-3735.
-
[16] H. B. Yang, Y. Wei, M. Shi, Tetrahedron, 2013, 69, 4088-4097.
-
[17] Y. M. Cao, F. F. Shen, F. T. Zhang, R. Wang, Chem. Eur. J., 2013, 19, 1184-1188.
-
[18] F. Tan, L. Q. Lu, Q. Q. Yang, W. Guo, Q. Bian, J. R. Chen, W. J. Xiao, Chem. Eur. J., 2014, 20, 3415-3420.
-
[19] M. S. Poslusney, B. J. Melancon, P. R. Gentry, D. J. Sheffler, T. M. Bridges, T. J. Utley, J. S. Daniels, C. M. Niswender, P. J. Conn, C. W. Lindsley, M. R. Wood, Bioorg. Med. Chem. Lett., 2013, 23, 1860-1864.
-
[20] D. Chen, M. H. Xu, Chem. Commun., 2013, 49, 1327-1329.
-
[21] B. Zhang, P. Feng, L. H. Sun, Y. Cui, S. Ye, N. Jiao, Chem. Eur. J., 2012, 18, 9198-9203.
-
[22] J. L. Meloche, B. L. Ashfeld, Angew. Chem. Int. Ed., 2017, 56, 6604-6608.
-
[23] B. V. S. Reddy, E. P. Reddy, B. Sridhar, Y. J. Rao, RSC Adv., 2016, 6, 50497-50499.
-
[24] S. Muthusamy, C. Gunanathan, M. Nethaji, J. Org. Chem., 2004, 69, 5631-5637.
-
[25] B. Hu, S. G. DiMagno, Org. Biomol. Chem., 2015, 13, 3844-3855.
-
[26] J. Fu, G. Zanoni, E. A. Anderson, X. Bi, Chem. Soc. Rev., 2017, 46, 7208-7228.
-
[27] P. Gu, Y. Su, X. P. Wu, J. Sun, W. Liu, P. Xue, R. Li, Org. Lett., 2012, 14, 2246-2249.
-
[28] E. López, L. A. López, Angew. Chem. Int. Ed., 2017, 56, 5121-5124.
-
[29] R. Yi, X. Li, B. Wan, Adv. Synth. Catal., 2018, 360, 875-880.
-
[30] Y. Hu, R. Yi, X. Yu, X. Xin, C. Wang, B. Wan, Chem. Commun., 2015, 51, 15398-15401.
-
[31] Y. Zhao, Y. Hu, H. Wang, X. Li, B. Wan, J. Org. Chem., 2016, 81, 4412-4420.
-
[32] T. Li, F. Xu, X. Li, C. Wang, B. Wan, Angew. Chem. Int. Ed., 2016, 55, 2861-2865.
-
[33] C. Wang, D. Wang, H. Yan, H. Wang, B. Pan, X. Xin, X. Li, F. Wu, B. Wan, Angew. Chem. Int. Ed., 2014, 53, 11940-11943.
-
[34] V. Kanchupalli, S. Katukojvala, Angew. Chem. Int. Ed., 2018, 57, 5433-5437.
-
[35] B. Alcaide, P. Almendros, C. Aragoncillo, R. Callejo, M. P. Ruiz, M. R. Torres, Eur. J. Org. Chem., 2012, 2012, 2359-2366.
-
[36] D. Cantillo, B. Gutmann, C. Oliver Kappe, Org. Biomol. Chem., 2016, 14, 853-857.
-
[37] M. A. Loreto, A. Migliorini, P. A. Tardella, A. Gambacorta, Eur. J. Org. Chem., 2007, 2365-2371.
-
-

计量
- PDF下载量: 10
- 文章访问数: 1068
- HTML全文浏览量: 108