电化学氢压缩和纯化与竞争技术的对比:I.优缺点

Maha Rhandi Marine Trégaro Florence Druart Jonathan Deseure Marian Chatenet

引用本文: Maha Rhandi,  Marine Trégaro,  Florence Druart,  Jonathan Deseure,  Marian Chatenet. 电化学氢压缩和纯化与竞争技术的对比:I.优缺点[J]. 催化学报, 2020, 41(5): 756-769. doi: S1872-2067(19)63404-2 shu
Citation:  Maha Rhandi,  Marine Trégaro,  Florence Druart,  Jonathan Deseure,  Marian Chatenet. Electrochemical hydrogen compression and purification versus competing technologies: Part I. Pros and cons[J]. Chinese Journal of Catalysis, 2020, 41(5): 756-769. doi: S1872-2067(19)63404-2 shu

电化学氢压缩和纯化与竞争技术的对比:I.优缺点

摘要: 毫无疑问,氢将在我们未来的能量组合中发挥重要作用,因为它可以储存可再生电(电-氢)并在燃料电池中可逆地转化为电能,更不用说它在(石油)化学工业中的广泛应用了.然而,在这些应用中需要纯氢,而如今的制氢仍主要基于化石燃料,因而不能被视为纯氢.因此,大规模的氢气净化是必须的.此外,氢是最轻的气体,它的体积能量含量远远低于它的竞争燃料,除非它在高压下被压缩(通常70MPa),使压缩不可避免.本文将详细说明目前可用于氢气净化和压缩的方法.这将表明在现有的技术中,也可以实现氢气净化的电化学氢压缩机(EHC)与目前工业规模上使用的经典技术相比具有许多优势.EHC有其热力学和操作上的优点,但也易于使用.然而,只有达到足够的性能,EHCs的部署才是可行的,这意味着他们的基础材料应遵守一些规范.本文将详述这些规范.

English

    1. [1] A. F. Ghoniem, Prog. Energy Combus. Sci., 2011, 37, 15-51.

    2. [2] N. A. Kelly, T. L. Gibson, D. B. Ouwerkerk, Int. J. Hydrogen Energy, 2008, 33, 2747-2764.

    3. [3] www.energy.gov, Last access:Feb 2, 2019.

    4. [4] M. Yáñez, A. Ortiz, B. Brunaud, I. E. Grossmann, I. Ortiz, Appl. Energy, 2018, 231, 777-787.

    5. [5] T. da Silva Veras, T. S. Mozer, D. da Costa Rubim Messeder dos Santos, A. da Silva César, Int. J. Hydrogen Energy, 2017, 42, 2018-2033.

    6. [6] I. Dincer, C. Acar, Int. J. Hydrogen Energy, 2015, 40, 11094-11111.

    7. [7] J.-P. Magnin, J. Deseure, Appl. Energy, 2019, 239, 635-643.

    8. [8] ISO 14687-2:2012, 2012.

    9. [9] ISO 14687-3:2014, 2014.

    10. [10] G. Sdanghi, G. Maranzana, A. Celzard, V. Fierro, Renew. Sustainable Energy Rev., 2019, 102, 150-170.

    11. [11] J. Bonjour, J.-B. Chalfen, F. Meunier, Ind. Eng. Chem. Res., 2002, 41, 5802-5811.

    12. [12] F. D. Rossini, Pure Appl. Chem., 1970, 22, 555-570.

    13. [13] G. Q. (UOP Miller Tarrytown, NY (US)) and J. (Union C. B. Stoecker N. V. Antwerp (BE)), Research Org.:None, 1989.

    14. [14] R. Agrawal, S. R. Auvil, S. P. DiMartino, J. S. Choe, J. A. Hopkins, Gas Sep. Purif., 1988, 2, 9-15.

    15. [15] S. Sircar, T. C. Golden, Sep. Sci. Technol., 2000, 35, 667-687.

    16. [16] M. Mondal, A. Datta, Int. J. Energy Res., 2017, 41, 448-458.

    17. [17] A. Abdeljaoued, F. Relvas, A. Mendes, M. H. Chahbani, J. Environ. Chem. Eng., 2018, 6, 338-355.

    18. [18] V. I. Agueda, J. A. Delgado, M. A. Uguina, P. Brea, A. I. Spjelkavik, R. Blom, C. Grande, Chem. Eng. Sci., 2015, 124, 159-169.

    19. [19] J. Xiao, L. Fang, P. Bénard, R. Chahine, Int. J. Hydrogen Energy, 2018, 43, 13962-13974.

    20. [20] A. Yokozeki, M. B. Shiflett, Appl. Energy, 2007, 84, 351-361.

    21. [21] N. A. Al-Mufachi, N. V. Rees, R. Steinberger-Wilkens, Renew. Sustainable Energy Rev., 2015, 47, 540-551.

    22. [22] M. Hong, S. Li, J. L. Falconer, R. D. Noble, J. Membrane Sci., 2008, 307, 277-283.

    23. [23] R. D. Noble, S. A. Stern, Ed., Membrane separations technology:principles and applications, 2nd. impression. Elsevier:Amsterdam, 1995.

    24. [24] D. Bastani, N. Esmaeili, M. Asadollahi, J. Ind. Eng. Chem., 2013, 19, 375-393.

    25. [25] P. C. K. Vesborg, T. F. Jaramillo, RSC Adv., 2012, 2, 7933.

    26. [26] M. D. Dolan, D. M. Viano, M. J. Langley, K. E. Lamb, J. Membrane Sci., 2018, 549, 306-311.

    27. [27] Z. Zhu, J. Hou, W. He, W. Liu, J. Alloys Compd., 2016, 660, 231-234.

    28. [28] E. Rebollo, C. Mortalo, S. Escolastico, S. Boldrini, S. Barison, J. M. Serra, M. Fabrizio, Energy Environ. Sci., 2015, 8, 3675-3686.

    29. [29] J. M. Sedlak, J. F. Austin, A. B. Laconti, Int. J. Hydrogen Energy, 1981, 6, 45-51.

    30. [30] R. L. Michael, Grant, Robert, Bruce, R. Lambert Michael and Grant, Robert, Bruce, 04-Oct-2007.

    31. [31] A. Golmakani, S. Fatemi, J. Tamnanloo, Sep. Purif. Technol., 2017, 176, 73-91.

    32. [32] G. Petitpas, S. M. Aceves, Int. J. Hydrogen Energy, 2014, 39, 20319-20323.

    33. [33] W. Vielstich, Ed., Fuel cell technology and applications:pt. 1, Reprinted. Wiley:Chichester, 2007.

    34. [34] W. Vielstich, H. Yokokawa, H. Gasteiger, Eds., Advances in Electrocatalysis, Materials, Diagnostics and Durability; part 2. Wiley:Chichester, 2009.

    35. [35] A. Midilli, M. Ay, I. Dincer, M. A. Rosen, Renew. Sustainable Energy Rev., 2005, 9, 255-271.

    36. [36] R. Khaksarfard, M. R. Kameshki, M. Paraschivoiu, Shock Waves, 2010, 20, 205-216.

    37. [37] E. L. Broerman, J. Bennett, N. Poerner, D. Strickland, J. Helffrich, S. Coogan, A. Rimpel, P. Bueno, DOE Hydrogen and Fuel Cells Program. FY 2015 Annual Progress Report, 2016.

    38. [38] H. Jiang, K. Liang, Z. Li, Mechan. Sys. Signal Processing, 2019, 121, 828-840.

    39. [39] R. L. Unger, Proceedings of International Compressor Engineering, 1998.

    40. [40] K. Liang, R. Stone, M. Dadd, P. Bailey, Int. J. Refrig., 2016, 66, 32-40.

    41. [41] K. Liang, R. Stone, M. Dadd, P. Bailey, Int. J. Refrig., 2014, 40, 450-459.

    42. [42] K. Liang, Int. J. Refrig., 2017, 84, 253-273.

    43. [43] N. A. Kermani, I. Petrushina, A. Nikiforov, J. O. Jensen, M. Rokni, Int. J. Hydrogen Energy, 2016, 41, 16688-16695.

    44. [44] Z. Lei, C. Dai, B. Chen, Chem. Rev., 2014, 114, 1289-1326.

    45. [45] S. Werner, M. Haumann, P. Wasserscheid, Annu. Rev. Chem. Biomol. Eng., 2010, 1, 203-230.

    46. [46] T. Predel, E. Schlücker, P. Wasserscheid, D. Gerhard, W. Arlt, Chem. Eng. Technol., 2007, 30, 1475-1480.

    47. [47] J. D. Van de Ven, P. Y. Li, Appl. Energy, 2009, 86, 2183-2191.

    48. [48] M. Mayer, A3PS Conference, 2014.

    49. [49] M. V. Lototskyy, V. A. Yartys, B. G. Pollet, R. C. Bowman, Int. J. Hydrogen Energy, 2014, 39, 5818-5851.

    50. [50] V. A. Yartys, G. Vijayaprasath, R. Murugan, S. Asaithambi, G. Anandha Babu, P. Sakthivel, T. Mahalingam, Y. Hayakawa, G. Ravi, Appl. Phys. A, 2016, 122, 122.

    51. [51] F. Laurencelle, Z. Dehouche, F. Morin, J. Goyette, J. Alloys Compd, 2009, 475, 810-816.

    52. [52] M. Bampaou, K. D. Panopoulos, A. I. Papadopoulos, P. Seferlis, S. Voutetakis, Chem. Eng. Trans., 2018, 70, 1213-1218.

    53. [53] R. Ströbel, M. Oszcipok, M. Fasil, B. Rohland, L. Jörissen, J. Garche, J. Power Sources, 2002, 105, 208-215.

    54. [54] P. J. Bouwman, J. Konink, D. Semerel, L. Raymakers, M. Koeman, W. Dalhuijsen, E. Milacic, M. Mulder, ECS Trans., 2014, 64, 1009-1018.

    55. [55] C. Casati, P. Longhi, L. Zanderighi, F. Bianchi, J. Power Sources, 2008, 180, 103-113.

    56. [56] H. Monjid, DOE Hydrogen & Fuel Cells Program, 14-Jun-2018.

    57. [57] J. Catalano, A. Bentien, D. N. Østedgaard-Munck, S. Kjelstrup, J. Membrane Sci., 2015, 478, 37-48.

    58. [58] T. Sakai, H. Takenaka, N. Wakabayashi, Y. Kawami, E. Torikai, J. Electrochem. Soc., 1985, 132, 1328-1332.

    59. [59] R. P. W. J. Struis, S. Stucki, M. Wiedorn, J. Membrane Sci., 1996, 113, 93-100.

    60. [60] P. Bouwman, Fuel Cells Bull., 2014, 2014, 12-16.

    61. [61] L. Lipp, DOE——FCE003727, 1235441, 2016.

    62. [62] B. Rohland, K. Eberle, R. Ströbel, J. Scholta, J. Garche, Electrochim. Acta, 1998, 43, 3841-3846.

    63. [63] B. M. Besancon, V. Hasanov, R. Imbault-Lastapis, R. Benesch, M. Barrio, M. J. Mølnvik, Int. J. Hydrogen Energy, 2009, 34, 2350-2360.

    64. [64] K. Onda, K. Ichihara, M. Nagahama, Y. Minamoto, T. Araki, J. Power Sources, 2007, 164, 1-8.

    65. [65] M. Chatenet, L. Dubau, N. Job, F. Maillard, Catal. Today, 2010, 156, 76-86.

    66. [66] T. A. Zawodzinski, M. Neeman, L. O. Sillerud, S. Gottesfeld, J. Phys. Chem., 1991, 95, 6040-6044.

    67. [67] T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, J. Electrochem. Soc., 1991, 138, 2334.

    68. [68] J. T. Hinatsu, M. Mizuhata, H. Takenaka, J. Electrochem. Soc., 1994, 141, 1493.

    69. [69] S. Ge, X. Li, B. Yi, I.-M. Hsing, J. Electrochem. Soc, 2005, 152, A1149.

    70. [70] A. Kusoglu, B. L. Kienitz, A. Z. Weber, J. Electrochem. Soc, 2011, 158, B1504.

    71. [71] P. W. Majsztrik, M. B. Satterfield, A. B. Bocarsly, J. B. Benziger, J. Membrane Sci., 2007, 301, 93-106.

    72. [72] D. M. Bernardi, M. W. Verbrugge, AIChE J., 1991, 37, 1151-1163.

    73. [73] D. Bessarabov, H. Wang, H. Li, N. Zhao, Eds., PEM Electrolysis for Hydrogen Production:Principles and Applications. CRC Press, 2015.

    74. [74] S. S. Kocha, J. D. Yang, J. S. Yi, AIChE J., 2006, 52, 1916-1925.

    75. [75] X. Cheng, J. Zhang, Y. Tang, C. Song, J. Shen, D. Song, J. Zhang, J. Power Sources, 2007, 167, 25-31.

    76. [76] N. T. Truc, S. Ito, K. Fushinobu, Int. J. Heat Mass Transfer, 2018, 127, 447-456.

    77. [77] A. Brunetti, E. Fontananova, A. Donnadio, M. Casciola, M. L. Di Vona, E. Sgreccia, E. Drioli, G. Barbieri, J. Power Sources, 2012, 205, 222-230.

    78. [78] K. D. Baik, B. K. Hong, M. S. Kim, Renew. Energy, 2013, 57, 234-239.

    79. [79] H. K. Lee, H. Y. Choi, K. H. Choi, J. H. Park, T. H. Lee, J. Power Sources, 2004, 132, 92-98.

    80. [80] S. A. Grigoriev, I. G. Shtatniy, P. Millet, V. I. Porembsky, V. N. Fateev, Int. J. Hydrogen Energy, 2011, 36, 4148-4155.

    81. [81] M. Mukaddam, E. Litwiller, I. Pinnau, Macromolecules, 2016, 49, 280-286.

    82. [82] V. A. Sethuraman, S. Khan, J. S. Jur, A. T. Haug, J. W. Weidner, Electrochim. Acta, 2009, 54, 6850-6860.

    83. [83] S. Suzuki, H. Muroyama, T. Matsui, K. Eguchi, J. Power Sources, 2012, 208, 257-262.

    84. [84] Y. He, E. L. Cussler, J. Membrane Sci., 1992, 68, 43-52.

    85. [85] F. Barbir, H. Görgün, J. Appl. Electrochem., 2007, 37, 359-365.

  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  1628
  • HTML全文浏览量:  104
文章相关
  • 收稿日期:  2019-05-20
  • 修回日期:  2019-07-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章