电化学氢压缩和纯化与竞争技术的对比:II.电催化的挑战

Marine Trégaro Maha Rhandi Florence Druart Jonathan Deseure Marian Chatenet

引用本文: Marine Trégaro,  Maha Rhandi,  Florence Druart,  Jonathan Deseure,  Marian Chatenet. 电化学氢压缩和纯化与竞争技术的对比:II.电催化的挑战[J]. 催化学报, 2020, 41(5): 770-782. doi: S1872-2067(19)63438-8 shu
Citation:  Marine Trégaro,  Maha Rhandi,  Florence Druart,  Jonathan Deseure,  Marian Chatenet. Electrochemical hydrogen compression and purification versus competing technologies: Part II. Challenges in electrocatalysis[J]. Chinese Journal of Catalysis, 2020, 41(5): 770-782. doi: S1872-2067(19)63438-8 shu

电化学氢压缩和纯化与竞争技术的对比:II.电催化的挑战

摘要: 在未来的几十年里,氢将成为世界能源政策的基础,因为它的脱碳性质,至少在可再生能源生产时是如此.目前,氢基本上仍然是从化石原料中生产出来的(在某种程度上来自于生物质);因此,目前市场上的氢气含有不可忽略的杂质,这些杂质阻碍了氢气立即用于特殊化学或作为燃料电池的能量载体,例如在运输应用(汽车、公共汽车、火车、船只等)中逐渐扩散到地球上.因此,氢气必须具有足够的纯度,但也必须充分压缩(在高压下,通常为70MPa),这使得氢气循环中不可避免存在净化和压缩步骤.如本文第一部分“电化学氢压缩和净化与竞争技术的对比——第一部分:优缺点”所示,电化学氢压缩机(EHCs)能够实现氢净化和压缩,具有比它们相应的机械设备更多的理论(热力学)和实际(动力学)的优越性.然而,为了具有竞争力,EHCs必须在非常密集的条件下运行(高电流密度和低电池电压),只有在其核心材料(如膜和电极/电催化剂)经过优化后才能达到.本文将特别关注电催化剂在EHCs中必须表现出的特性:在杂质存在的情况下它们应促进(非常)快速的氢氧化反应(HOR),这意味着它们对毒物也具有(非常)耐受性.这包括操作氢气净化压缩所用的EHC阳极的先决条件,而大量低温燃料电池文献中为耐受毒性而开发的材料可能并不总是满足这两个标准,正如本综述所阐述的.

English

    1. [1] "Home|California Fuel Cell Partnership."[Online]. Available:https://cafcp.org/.[Accessed:19-Feb-2019].

    2. [2] "Development of the new model of a residential fuel cell, ‘ENE-FARM,’" Tokyo Gas: Technical Development/Comfortable housing and lifestyle-Residential Sector.[Online]. Available:https://www.tokyo-gas.co.jp/techno/english/menu3/2_index_detail.html.[Accessed:19-Feb-2019].

    3. [3] "Fuel cell and hydrogen technology:Europe's journey to a greener world," presented at the 10th Stakeholder Forum I Fuel Cells and Hydrogen Joint Undertaking, 2017.

    4. [4] A. F. Ghoniem, Prog. Energy Combus. Sci., 2011, 37, 15-51.

    5. [5] S. Z. Baykara, Int. J. Hydrogen Energy, 2018, 43, 10605-10614.

    6. [6] R. Łukajtis, I. Holowacz, K. Kucharska, M. Glinka, P. Rybarczyk, A. Przyjazny, M. Kaminski, Renew. Sustainable Energy Rev., 2018, 91, 665-694.

    7. [7] J.-P. Magnin, J. Deseure, Appl. Energy, 2019, 239, 635-643.

    8. [8] S. Zhang, L. Wang, C. Liu, J. Luo, J. Crittenden, X. Liu, T. Cai, J. Yuan, Y. Pei, Y. Liu, Water Res., 2017, 121,11-19.

    9. [9] C. Vacquand, E. Deville, V. Beaumont, F. Guyot, O. Sissmann, D. Pillot, C. Arcilla, A. Prinzhofer, Geochim. Cosmochim. Acta, 2018, 223, 437-461.

    10. [10] "U.S. Department of Energy."

    11. [11] "ISO 14687-2:2012:Hydrogen fuel——Product specification——Part 2:Proton exchange membrane (PEM) fuel cell applications for road vehicles." 2012.

    12. [12] "ISO 14687-3:2014:Hydrogen fuel——Product specification——Part 3:Proton exchange membrane (PEM) fuel cell applications for stationary appliances." 2014.

    13. [13] G. Sdanghi, G. Maranzana, A. Celzard, V. Fierro, Renew. Sustainable Energy Rev., 2019, 102, 150-170.

    14. [14] B. A. T. Mehrabadi, H. N. Dinh, G. Bender, J. W. Weidner, J. Electrochem. Soc., 2016, 163, F1527-F1534.

    15. [15] T. Reshetenko, A. Serov, K. Artyushkova, I. Matanovic, Sarah Stariha, P. Atanassov, J. Power Sources, 2016, 324, 556-571.

    16. [16] O. A. Baturina, B. Dyatkin, T. V. Reshetenko, in:Nanostructured Materials for Next-Generation Energy Storage and Conversion:Fuel Cells, F. Li, S. Bashir, J. L. Liu, Eds. Berlin, Heidelberg:Springer Berlin Heidelberg, 2018, 407-441.

    17. [17] R. Tuominen, N. Helppolainen, J. Ihonen, J. Viitakangas, Int. J. Hydrogen Energy, 2018, 43, 4143-4159.

    18. [18] J. Qi, Y. Zhai, J. St-Pierre, J. Power Sources, 2019, 413, 86-97.

    19. [19] M. Chatenet, L. Dubau, N. Job, F. Maillard, Catal. Today, 2010, 156, 76-86

    20. [20] F. Maillard, S. Pronkin, E. R. Savinova, in:Fuel Cell Catalysis, M. T. M. Koper, Ed. Hoboken, NJ, USA:John Wiley & Sons, Inc., 2009, 507-566.

    21. [21] P. J. Ferreira, G. J. la O', Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H. A. Gasteiger, J. Electrochem. Soc., 2005, 152, A2256.

    22. [22] L. Dubau, L. Castanheira, F. Maillard, M. Chatenet, O. Lottin, G. Maranzana, J. Dillet, A. Lamibrac, J. Perrin, E. Moukheiber, A. ElKaddouri, G. De Moor, C. Bas, L. Flandin, N. Caque, Wiley Interdisciplinary Reviews:Energy Environment, 2014, 3, 540-560.

    23. [23] F. Maillard, S. Pronkin, E. R. Savinova, in:Hbook of Fuel Cells, W. Vielstich, A. Lamm, H. A. Gasteiger, H. Yokokawa, Eds. Chichester, John Wiley & Sons, Ltd, 2010.

    24. [24] E. Guilminot, A. Corcella, M. Chatenet, F. Maillard, F. Charlot, G. Berthome, C. Iojoiu, J.-Y. Sanchez, E. Rossinot, E. Claude, J. Electrochem. Soc., 2007, 154, B1106.

    25. [25] E. Guilminot, A. Corcella, F. Charlot, F. Maillard, M. Chatenet, J. Electrochem. Soc., 2007, 154, B96

    26. [26] Y. Sun, Y. Dai, Y. Liu, S. Chen, Phys. Chem. Chem. Phys., 2012, 14, 2278.

    27. [27] C. M. Zalitis, J. Sharman, E. Wright, A. R. Kucernak, Electrochim. Acta, 2015, 176, 763-776.

    28. [28] B. M. Besancon, V. Hasanov, R. Imbault-Lastapis, R. Benesch, M. Barrio, M. J. Mølnvik, Int. J. Hydrogen Energy, 2009, 34, 2350-2360.

    29. [29] S. Abbou, J. Dillet, D. Spernjak, R. Mukundan, R. L. Borup, G. Maranzana, O. Lottin, J. Electrochem. Soc., 2015, 162, F1212-F1220.

    30. [30] S. Abbou, J. Dillet, G. Maranzana, S. Didierjean, O. Lottin, J. Power Sources, 2017, 340, 419-427.

    31. [31] S. Abbou, J. Dillet, G. Maranzana, S. Didierjean, O. Lottin, J. Power Sources, 2017, 340, 337-346.

    32. [32] S. Um, C.-Y. Wang, K. S. Chen, J. Electrochem.Soc., 2000, 147, 4485.

    33. [33] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z. Liu, H. Wang, J. Shen, J. Power Sources, 2007, 165, 739-756.

    34. [34] C. Y. Chen, W. H. Lai, W. M. Yan, C. C. Chen, S. W. Hsu, J. Power Sources, 2013, 243, 138-146.

    35. [35] T. Gu, W.-K. Lee, J. W. Van Zee, M. Murthy, J. Electrochem. Soc., 2004, 151, A2100.

    36. [36] T. Tingelöf, L. Hedström, N. Holmström, P. Alvfors, G. Lindbergh, Int. J. Hydrogen Energy, 2008, 33, 2064-2072.

    37. [37] B. Ibeh, C. Gardner, M. Ternan, Int. J. Hydrogen Energy, 2007, 32, 908-914.

    38. [38] C.-Y. Chen, K.-P. Huang, J. Appl. Electrochem., 2018, 48, 911-921.

    39. [39] J. Giner, Electrochim. Acta, 1963, 8, 857-865.

    40. [40] F. A. de Bruijn, D. C. Papageorgopoulos, E. F. Sitters, G. J. M. Janssen, J. Power Sources, 2002, 110, 117-124.

    41. [41] T. Gu, W. K. Lee, J. W. Van Zee, Appl. Catal. B, 2005, 56, 43-49.

    42. [42] M. A. Díaz, A. Iranzo, F. Rosa, F. Isorna, E. López, J. P. Bolivar, Energy, 2015, 90, 299-309.

    43. [43] W.-M. Yan, H.-S. Chu, M.-X. Lu, F.-B. Weng, G.-B. Jung, C.-Y. Lee, J. Power Sources, 2009, 188, 141-147.

    44. [44] D. C. Papageorgopoulos, F. A. de Bruijn, J. Electrochem. Soc., 2002, 149, A140.

    45. [45] R. Halseid, R. Tunold, J. Electrochem. Soc., 2006, 153, A2319.

    46. [46] N. Zamel, X. Li, Prog. Energy Combus. Sci., 2018, 37, 292-329.

    47. [47] J. J. Baschuk, X. Li, Int. J. Energy Res., 2001, 25, 695-713.

    48. [48] S. Gilman, J. Phys. Chem., 1964, 68, 70-80.

    49. [49] G. Karimi, X. Li, J. Power Sources, 2006, 159, 943-950.

    50. [50] R. Benesch, S. Salman, T. Jacksier, 2006, 1-11.

    51. [51] R. Halseid, P. J. S. Vie, R. Tunold, J. Power Sources, 2006, 154, 343-350.

    52. [52] F. A. Uribe, S. Gottesfeld, T. A. Zawodzinski, J. Electrochem. Soc., 2002, 149, A293.

    53. [53] H. J. Soto, W. Lee, J. W. Van Zee, M. Murthy, Electrochem. Solid-State Lett., 2003, 6, A133.

    54. [54] R. Halseid, P. J. S. Vie, R. Tunold, J. Electrochem. Soc., 2004, 151, A381.

    55. [55] D. Imamura, Y. Matsuda, Y. Hashimasa, M. Akai, ECS Trans., 2011, 41, 2083-2089.

    56. [56] V. Rosca, M. T. M. Koper, Phys. Chem. Chem. Phys., 2006, 8, 2513.

    57. [57] Y. A. Gomez, A. Oyarce, G. Lindbergh, C. Lagergren, J. Electrochem. Soc., 2018, 165, F189-F197.

    58. [58] T. E. Springer, T. Rockward, T. A. Zawodzinksi, S. Gottesfeld, J. Electrochem. Soc., 2001, 148, L9.

    59. [59] W. Vogel, J. Lundquist, P. Ross, P. Stonehart, Electrochim. Acta, 1975, 20, 79-93.

    60. [60] M. Murthy, M. Esayian, W. Lee, J. W. Van Zee, J. Electrochem. Soc., 2003, 150, A29.

    61. [61] L. Dubau, F. Maillard, Electrochem. Commun., 2016, 63, 65-69.

    62. [62] W. H. Scholz, Gas Sep. Purif., 1993, 7, 131-139.

    63. [63] W. Yourong, Y. Heqing, W. E'feng, J. Electroanal. Chem., 2001, 497, 163-167.

    64. [64] R. Jayaram, A. Q. Contractor, H. Lal, J. Electroanal. Chem., 1978, 87, 225-237.

    65. [65] E. Najdeker, E. Bishop, Electroanal. Chem. Interfacial Electrochem., 1973, 41, 79-87.

    66. [66] T. Loucka, Electroanal. Chem. Interfacial Electrochem., 1971, 31, 319-332.

    67. [67] W. Shi, B. Yi, M. Hou, F. Jing, H. Yu, P. Ming, J. Power Sources, 2007, 164, 272-277.

    68. [68] V. A. Sethuraman, J. W. Weidner, Electrochim. Acta, 2010, 55, 5683-5694.

    69. [69] R. Mohtadi, W. K. Lee, J. W. Van Zee, Appl. Catal. B, 2005, 56, 37-42.

    70. [70] A. A. Shah, F. C. Walsh, J. Power Sources, 2008, 185, 287-301.

    71. [71] I. G. Urdampilleta, F. A. Uribe, T. Rockward, E. L. Brosha, B. S. Pivovar, F. H. Garzon, ECS Trans., 2007, 11, 831-842.

    72. [72] K. K. Bhatia, C. Y. Wang, Electrochim. Acta, 2004, 49, 2333-2341.

    73. [73] G. J. M. Janssen, J. Power Sources, 2004, 136, 45-54.

    74. [74] W. Shi, B. Yi, M. Hou, Z. Shao, Int. J. Hydrogen Energy, 2007, 32, 4412-4417.

    75. [75] X. Wang, P. Baker, X. Zhang, H. F. Garces, L. J. Bonville, U. Pasaogullari, T. M. Molter, Int. J. Hydrogen Energy, 2014, 39, 19701-19713.

    76. [76] D. Imamura, Y. Hashimasa, ECS Trans., 2007, 11, 853-862.

    77. [77] M. S. Wilson, C. R. Derouin, J. Valerio, S. Gottesfeld, in:Proceedings of the 28th Intersociety Energy conversion engineering conference, Atlanta, Georgia, 1993, 1203-1208.

    78. [78] S. Gottesfeld, J. Pafford, J. Electrochem. Soc., 1988, 135, 2651.

    79. [79] P. A. Adcock, S. V. Pacheco, K. M. Norman, F. A. Uribe, J. Electrochem. Soc., 2005, 152, A459.

    80. [80] J. J. Baschuk, X. Li, Int. J. Energy Res., 2003, 27, 1095-1116.

    81. [81] T. Lopes, V. A. Paganin, E. R. Gonzalez, J. Power Sources, 2011, 196, 6256-6263.

    82. [82] C. L. Gardner, M. Ternan, J. Power Sources, 2007, 171, 835-841.

    83. [83] A. Hassan, V. A. Paganin, E. A. Ticianelli, Electrocatalysis, 2015, 6, 512-520.

    84. [84] F. R. Nikkuni, B. Vion-Dury, L. Dubau, F. Maillard, E. A. Ticianelli, M. Chatenet, Appl. Catal. B, 2014, 156-157, 301-306.

    85. [85] F. R. Nikkuni, L. Dubau, E. A. Ticianelli, M. Chatenet, Appl. Catal. B, 2015, 176-177, 486-499.

    86. [86] A. A. Topalov, S. Cherevko, A. R. Zeradjanin, J. C. Meier, I. Katsounaros, K. J. J. Mayrhofer, Chem. Sci., 2014, 5, 631-638.

    87. [87] S. Cherevko, G. P. Keeley, S. Geiger, A. R. Zeradjanin, N. Hodnik, N. Kulyk, K. J. J. Mayrhofer, ChemElectroChem, 2015, 2, 1471-1478.

    88. [88] S. Cherevko, A. R. Zeradjanin, G. P. Keeley, K. J. J. Mayrhofer, J. Electrochem.Soc., 2014, 161, H822-H830.

    89. [89] A. Zadick, L. Dubau, N. Sergent, G. Berthomé, M. Chatenet, ACS Catal., 2015, 5, 4819-4824.

    90. [90] C. Lafforgue, A. Zadick, L. Dubau, F. Maillard, M. Chatenet, Fuel Cells, 2018, 18, 229-238.

    91. [91] M. Schalenbach, O. Kasian, M. Ledendecker, F. D. Speck, A. M. Mingers, K. J. J. Mayrhofer, S. Cherevko, Electrocatalysis, 2018, 9, 153-161.

    92. [92] C. Yang, J. Wang, H. Fan, Y. Hu, J. Shen, J. Shangguan, B. Wang, Energy Fuels, 2018, 32, 6064-6072.

    93. [93] C. Babé, M. Tayakout-Fayolle, C. Geantet, M. Vrinat, G. Bergeret, T. Huard, D. Bazer-Bachi, Chem. Eng. Sci., 2012, 82, 73-83.

    94. [94] H. A. Aleksrov, P. St. Petkov, G. N. Vayssilov, Energy Environ. Sci., 2011, 4, 1879.

    95. [95] A. Golmakani, S. Fatemi, J. Tamnanloo, Sep. Purif. Technol., 2017, 176, 73-91.

    96. [96] T. Yamamoto, M. Tayakout-Fayolle, C. Geantet, Chem. Eng. J., 2015, 262, 702-709.

    97. [97] A. B. Anderson, E. Grantscharova, J. Phys. Chem., 1995, 99, 9143-9148.

    98. [98] D. A. Tryk, G. Shi, H. Yano, J. Inukai, H. Uchida, A. Iiyama, M. Matsumoto, H. Tanida, M. Arao, H. Imai, ECS Trans., 2018, 85, 41-46.

    99. [99] F. Maillard, M. Eikerling, O. V. Cherstiouk, S. Schreier, E. R. Savinova, U. Stimming, Faraday Disc., 2004, 125, 357.

    100. [100] F. Maillard, S. Schreier, M. Hanzlik, E. R. Savinova, S. Weinkauf, U. Stimming, Phys. Chem. Chem. Phys., 2005, 7, 385-393.

    101. [101] S. Brimaud, S. Pronier, C. Coutanceau, J. M. Léger, Electrochem. Commun., 2008, 10, 1703-1707.

    102. [102] L. G. S. Pereira, V. A. Paganin, E. A. Ticianelli, Electrochim. Acta, 2009, 54, 1992-1998.

    103. [103] G. García, J. A. Silva-Chong, O. Guillén-Villafuerte, J. L. Rodríguez, E. R. González, E. Pastor, Catal. Today, 2006, 116, 415-421.

    104. [104] S. Iwase, M., Kawatsu, In Proceedings of the first International Symposium on proton conducting membrane fuel cells, 1995, 1, 12-18.

    105. [105] S. Carenco, Chem. Eur. J., 2014, 20, 10616-10625.

    106. [106] M. Watanabe, S. Motoo, Electroanal. Chem. Interf. Electrochem., 1975, 60, 275-293.

    107. [107] H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, J. Phys. Chem., 1994, 98, 617-625.

    108. [108] H. A. Gasteiger, N. M. Markovic, P. N. Ross, J. Phys. Chem., 1995, 99, 16757-16767.

    109. [109] H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, J. Phys. Chem., 1993, 97, 12020-12029.

    110. [110] T. Kawaguchi, W. Sugimoto, Y. Murakami, Y. Takasu, Electrochem. Commun., 2004, 6, 480-483.

    111. [111] L. Dubau, F. Hahn, C. Coutanceau, J.-M. Léger, C. Lamy, J. Electroanal. Chem., 2003, 554-555, 407-415.

    112. [112] R. Mohtadi, W. -k. Lee, S. Cowan, J. W. Van Zee, M. Murthy, Electrochem. Solid-State Lett., 2003, 6, A272.

    113. [113] L. Gancs, B. N. Hult, N. Hakim, S. Mukerjee, Electrochem. Solid-State Lett., 2007, 10, B150.

    114. [114] H. A. Gasteiger, N. M. Markovic, P. N. Ross, J. Phys. Chem., 1995, 99, 8945-8949.

    115. [115] K. Wang, H. A. Gasteiger, N. M. Markovic, P. N. Ross, Electrochim. Acta, 1996, 41, 2587-2593.

    116. [116] D. Lee, S. Hwang, I. Lee, J. Power Sources, 2005, 145, 147-153.

    117. [117] E. I. Santiago, G. A. Camara, E. A. Ticianelli, Electrochim. Acta, 2003, 48, 3527-3534.

    118. [118] E. I. Santiago, M. S. Batista, E. M. Assaf, E. A. Ticianelli, J. Electrochem. Soc., 2004, 151, A944.

    119. [119] R. C. Urian, A. F. Gullá, S. Mukerjee, J. Electroanal. Chem., 2003, 554-555, 307-324.

    120. [120] S. Mukerjee, R. C. Urian, S. J. Lee, E. A. Ticianelli, J. McBreen, J. Electrochem. Soc., 2004, 151, A1094.

    121. [121] T. C. M. Nepel, P. P. Lopes, V. A. Paganin, E. A. Ticianelli, Electrochim. Acta, 2013, 88, 217-224.

    122. [122] A. Hassan, E. A. Ticianelli, Anais da Academia Brasileira de Ciencias, 2018, 90, 697-718.

    123. [123] M. Götz, H. Wendt, Electrochim. Acta, 1998, 43, 3637-3644.

    124. [124] T. Ioroi, Z. Siroma, S. Yamazaki, K. Yasuda, Adv. Energy Mater., 2018, 1801284.

    125. [125] T. Ioroi, T. Akita, S. Yamazaki, Z. Siroma, N. Fujiwara, K. Yasuda, Electrochim. Acta, 2006, 52, 491-498.

    126. [126] L. Liu, F. Zhou, R. Kodiyath, S. Ueda, H. Abe, D. Wang, Y. Deng, J. Ye, Phys. Chem. Chem. Phys., 2016, 18, 29607-29615.

    127. [127] K. Kwon, Y. Jung, H. Ku, K. H. Lee, S. Kim, J. Sohn, C. Pak, Catalysts, 2016, 6, 68.

    128. [128] D. Takimoto, T. Ohnishi, Y. Ayato, D. Mochizuki, W. Sugimoto, J. Electrochem. Soc., 2016, 163, 367-371.

    129. [129] F. Micoud, PhD Thesis, 2009.

    130. [130] F. Micoud, F. Maillard, A. Gourgaud, M. Chatenet, Electrochem. Commun., 2009, 11, 651-654.

    131. [131] F. Micoud, F. Maillard, A. Bonnefont, N. Job, M. Chatenet, Phys. Chem. Chem. Phys., 2010, 12, 1182-1193.

    132. [132] D. Takimoto, T. Ohnishi, W. Sugimoto, ECS Electrochem. Lett., 2015, 4, F35-F37.

    133. [133] S. I. Yamazaki, Y. Yamada, S. Takeda, M. Goto, T. Ioroi, Z. Siroma, K. Yasuda, Phys. Chem. Chem. Phys., 2010, 12, 8968-8976.

    134. [134] S. Yamazaki, M. Yao, S. Takeda, Z. Siroma, T. Ioroi, K. Yasuda, Electrochem. Solid-State Lett., 2011, 14, B23.

    135. [135] F. Gloaguen, F. Andolfatto, R. Durand, P. Ozil, J. Appl. Electrochem., 1994, 24, 863-869.

    136. [136] J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz, H. A. Gasteiger, Energy Environ. Sci., 2014, 7, 2255-2260.

    137. [137] J. Durst, C. Simon, F. Hasché, H. A. Gasteiger, J. Electrochem. Soc., 2015, 162, F190-F203.

    138. [138] C. M. Zalitis, D. Kramer, A. R. Kucernak, Phys. Chem. Chem. Phys., 2013, 15, 4329-4340.

    139. [139] A. R. Kucernak, C. M. Zalitis, J. Phys. Chem. C, 2016, 120, 10721-10745.

    140. [140] M. Inaba, A. W. Jensen, G. W. Sievers, M. Escudero-Escribano, A. Zana, M. Arenz, Energy Environ. Sci., 2018, 11, 988-994.

    141. [141] K. C. Neyerlin, W. Gu, J. Jorne, H. A. Gasteiger, J. Electrochem. Soc., 2007, 154, B631.

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  628
  • HTML全文浏览量:  50
文章相关
  • 收稿日期:  2019-05-20
  • 修回日期:  2019-07-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章