单原子负载型MXene用于电催化合成氨过程的理论计算

高怡静 卓涵 曹勇勇 孙翔 庄桂林 邓声威 钟兴 魏中哲 王建国

引用本文: 高怡静,  卓涵,  曹勇勇,  孙翔,  庄桂林,  邓声威,  钟兴,  魏中哲,  王建国. 单原子负载型MXene用于电催化合成氨过程的理论计算[J]. 催化学报, 2019, 40(2): 152-159. doi: S1872-2067(18)63197-3 shu
Citation:  Yijing Gao,  Han Zhuo,  Yongyong Cao,  Xiang Sun,  Guilin Zhuang,  Shengwei Deng,  Xing Zhong,  Zhongzhe Wei,  Jianguo Wang. A theoretical study of electrocatalytic ammonia synthesis on single metal atom/Mxene[J]. Chinese Journal of Catalysis, 2019, 40(2): 152-159. doi: S1872-2067(18)63197-3 shu

单原子负载型MXene用于电催化合成氨过程的理论计算

  • 基金项目:

    国家自然科学基金(21625604,21776251,21671172,21706229,21878272).

摘要: 合成氨在地球氮循环中扮演着重要角色.工业上传统的合成氨方法采用高温高压的反应条件,对反应设备要求高,并且导致了巨大的能耗.因此,以电力为驱动的电催化合成过程作为一种新型的合成氨方法引起了广泛关注.选择和设计合适的催化剂以降低所需的过电势是该过程的一个重要研究课题.常用的电催化剂包括金属基、金属氧化物、聚合物及其他复合性催化剂.其中,单原子催化剂因其极高的原子利用率而广受关注,但必须选择合适的基底使其成为兼具高催化活性和高稳定性的催化剂.二维过渡金属碳/氮化物(MXene)作为一种新型二维材料,拥有和石墨烯类似的电导性质,并与金属有良好的相互作用,是一种富有希望的载体.本文采用密度泛函理论研究了氮气在一系列MXene负载的过渡金属单原子催化剂上的吸附和活化,通过吉布斯自由能计算研究了电催化合成氨的反应路径,给出了相应的过电势.同时,通过研究可能的决速步骤的吉布斯自由能,分析了吉布斯自由能和过电势之间的关系.
计算结果表明,在所有的MXene负载的过渡金属单原子上,氮气更倾向于一端吸附.根据吉布斯自由能的定义,负值显示这些催化剂具有良好的氮气活化性能,特别是铁基催化剂(-0.75eV),这就不难理解工业上广泛应用铁基催化剂.而负载不同的过渡金属对电催化合成氨的过电势具有一定影响.通过吉布斯自由能计算发现,该系列金属的过电势在0.68-2.33eV,Mo/Ti3C2O2需要的外加电压最少.这对实验上催化剂的选择具有一定的指导意义.同时,我们发现电催化合成氨过程有两个可能的决速步骤:氮气加氢生成NNH和NH2生成氨气.通过比较这两个步骤的吉布斯自由能可快速得到催化剂的过电势.
因此,我们可以得出结论,该系列MXene负载的过渡金属单原子催化剂能够有效地改变反应路径,免出现传统反应中氮氮键断裂的巨大能垒,从而有效降低了反应的过电势.这为实验上选择合适的催化剂提供了理论依据.并且,这种通过直接比较决速步骤的吉布斯自由能得到过电势的方法对电催化合成氨以及其他类似反应的催化剂筛选和理性设计具有指导意义.

English

    1. [1] T. Travis, Chem. Ind., 1993, 581-585.

    2. [2] W. Patkowski, W. Rarog-Pilecka, Przem. Chem., 2017, 96, 1042-1046.

    3. [3] J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Norskov, ChemSusChem, 2015, 8, 2180-2186.

    4. [4] I. A. Amar, R. Lan, C. T. G. Petit, S. Tao, J. Solid State Electrochem., 2011, 15, 1845-1860.

    5. [5] V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides, Catal. Today, 2017, 286, 2-13.

    6. [6] B. H. R. Suryanto, C. S. M. Kang, D. B. Wang, C. L. Xiao, F. L. Zhou, L. M. Azofra, L. Cavallo, X. Y. Zhang, D. R. MacFarlane, ACS Energy Lett., 2018, 3, 1219-1224.

    7. [7] Y. Abghoui, A. L. Garden, J. G. Howat, T. Vegge, E. Skulason, ACS Catal., 2016, 6, 635-646.

    8. [8] Y. Abghoui, E. Skulason, Catal. Today, 2017, 286, 78-84.

    9. [9] I. Coric, P. L. Holland, J. Am. Chem. Soc., 2016, 138, 7200-7211.

    10. [10] J. G. Howalt, T. Bligaard, J. Rossmeisl, T. Vegge, Phys. Chem. Chem. Phys., 2013, 15, 7785-7795.

    11. [11] Y. X. Chen, S. P. Chen, Q. S. Chen, Z. Y. Zhou, S. G. Sun, Electrochim. Acta, 2008, 53, 6938-6943.

    12. [12] X. Zhang, D. F. Wu, D. J. Cheng, Electrochim. Acta, 2017, 246, 572-579.

    13. [13] H. L. Dong, Y. Y. Li, D. E. Jiang, J. Phys. Chem. C, 2018, 122, 11392-11398.

    14. [14] A. B. Hoskuldsson, Y. Abghoui, A. B. Gunnarsdottir, E. Skulason, ACS Sustain. Chem. Eng., 2017, 5, 10327-10333.

    15. [15] J. Li, H. Zhou, H. Zhuo, Z. Wei, G. Zhuang, X. Zhong, S. Deng, X. Li, J. Wang, J. Mater. Chem. A, 2018, 6, 2264-2272.

    16. [16] C. N. Cui, J. Y. Han, X. L. Zhu, X. Liu, H. Wang, D. H. Mei, Q. F. Ge, J. Catal., 2016, 343, 257-265.

    17. [17] G. F. Chen, X. Cao, S. Wu, X. Zeng, L. X. Ding, M. Zhu, H. Wang, J. Am. Chem. Soc., 2017, 139, 9771-9774.

    18. [18] A. N. A. Anasthasiya, M. Khaneja, B. G. Jeyaprakash, J. Electron. Mater., 2017, 46, 5642-5656.

    19. [19] S. M. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. S. Su, G. Centi, Angew. Chem. Int. Ed., 2017, 56, 2699-2703.

    20. [20] F. Chen, X. Jiang, L. Zhang, R. Lang, B. Qiao, Chin. J. Catal., 2018, 39, 893-898.

    21. [21] P. Hu, Z. Huang, Z. Amghouz, M. Makkee, F. Xu, F. Kapteijn, A. Dikhtiarenko, Y. Chen, X. Gu, X. Tang, Angew. Chem. Int. Ed., 2014, 53, 3418-3421.

    22. [22] Y. B. Gu, X. L. Chen, Y. Y. Cao, G. L. Zhuang, X. Zhong, J. G. Wang, Nanotechnology, 2017, 28, 295403/1-295403/9.

    23. [23] C. Zhang, W. Zhang, W. T. Zheng, Chin. J. Catal., 2018, 39, 4-7.

    24. [24] X. B. He, F. X. Yin, H. Wang, B. H. Chen, G. R. Li, Chin. J. Catal., 2018, 39, 207-227.

    25. [25] X. Y. Li, P. Cui, W. H. Zhong, J. Li, X. J. Wang, Z. W. Wang, J. Jiang, Chem. Commun., 2016, 52, 13233-13236.

    26. [26] J. Zhao, J. X. Zhao, Q. H. Cai, Phys. Chem. Chem. Phys., 2018, 20, 9248-9255.

    27. [27] Z. X. Wang, Z. G. Yu, J. X. Zhao, Phys. Chem. Chem. Phys., 2018, 20, 12835-12844.

    28. [28] Y. Y. Cao, Y. J. Gao, H. Zhou, X. L. Chen, H. Hu, S. W. Deng, X. Zhong, G. L. Zhuang, J. G. Wang, Adv. Theory Simul., 2018, 1, 1870012.

    29. [29] S. Back, J. Lim, N. Y. Kim, Y. H. Kim, Y. Jung, Chem. Sci., 2017, 8, 1090-1096.

    30. [30] R. P. Pandey, K. Rasool, V. E. Madhavan, B. Aissa, Y. Gogotsi, K. A. Mahmoud, J. Mater. Chem. A, 2018, 6, 3522-3533.

    31. [31] X. Zhang, J. C. Lei, D. H. Wu, X. D. Zhao, Y. Jing, Z. Zhou, J. Mater. Chem. A, 2016, 4, 4871-4876.

    32. [32] X. Zhang, Z. H. Zhang, J. L. Li, X. D. Zhao, D. H. Wu, Z. Zhou, J. Mater. Chem. A, 2017, 5, 12899-12903.

    33. [33] Y. J. Jiang, X. N. Zhang, L. J. Pei, S. Yue, L. Ma, L. Y. Zhou, Z. H. Huang, Y. He, J. Gao, Chem. Eng. J., 2018, 339, 547-556.

    34. [34] L. Lorencova, T. Bertok, J. Filip, M. Jerigova, D. Velic, P. Kasak, K. A. Mahmoud, J. Tkac, Sensors Actuat. B, 2018, 263, 360-368.

    35. [35] G. Y. Fan, X. J. Li, C. L. Xu, W. D. Jiang, Y. Zhang, D. J. Gao, J. Bi, Y. Wang, Nanomaterials, 2018, 8, 141/1-141/13.

    36. [36] Y. Luo, G. F. Chen, L. Ding, X. Chen, L. X. Ding, H. Wang, Joule, 2018, DOI: 10.1016/j.joule.2018.09.021.

    37. [37] J. Peng, X. Chen, W. J. Ong, X. Zhao, N. Li, Chem, 2018, 5, 1-33.

    38. [38] G. Kresse, J. Furthmuller, Comp. Mater. Sci., 1996, pp. 15-50.

    39. [39] G. Kresse, J. Furthmuller, Phys. Rev. B, 1996, 54, 11169-11186.

    40. [40] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1998, 80, 891-891.

    41. [41] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.

    42. [42] P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.

    43. [43] H. J. Monkhorst, J. D. Pack, Phys. Rev. B, 1976, 13, 5188-5192.

    44. [44] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104/1-154104/9.

    45. [45] K. Momma, F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272-1276.

    46. [46] J. Rossmeisl, A. Logadottir, J. K. Nørskov, Chem. Phys., 2005, 319, 178-184.

    47. [47] O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall'Agnese, M. Heon, M. W. Barsoum, Y. Gogotsi, Nat. Commun., 2013, 4, 1716.

    48. [48] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hult-man, Y. Gogotsi, M. W. Barsoum, Adv. Mater., 2011, 23, 4248-4253.

    49. [49] Y. Tong, M. He, Y. M. Zhou, X. Zhong, L. D. Fan, T. Y. Huang, Q. Liao, Y. J. Wang, J. Mater. Sci. Mater. Electron., 2018, 29, 8078-8088.

    50. [50] L. Meng, Y. L. Wang, L. Z. Zhang, S. X. Du, R. T. Wu, L. F. Li, Y. Zhang, G. Li, H. T. Zhou, W. A. Hofer, H. J. Gao, Nano Lett., 2013, 13, 685-690.

    51. [51] A. D. Becke, K. E. Edgecombe, J. Chem. Phys., 1990, 92, 5397-5403.

    52. [52] W. Tang, E. Sanville, G. Henkelman, J. Phys. Condens. Matter., 2009, 21, 7084204.

    53. [53] J. X. Zhao, Z. F. Chen, J. Am. Chem. Soc., 2017, 139, 12480-12487.

    54. [54] L. M. Azofra, C. Sun, L. Cavallo, D. R. Macfarlane, Chem.-Eur. J., 2017, 23, 8275-8279.

    55. [55] J. Rittle, J. C. Peters, J. Am. Chem. Soc., 2016, 138, 4243-4248.

    56. [56] D. Bao, Q. Zhang, F. L. Meng, H. X. Zhong, M. M. Shi, Y. Zhang, J. M. Yan, Q. Jiang, X. B. Zhang, Adv. Mater., 2017, 29, doi: 10.1002/adma.2016014799.

  • 加载中
计量
  • PDF下载量:  23
  • 文章访问数:  1669
  • HTML全文浏览量:  271
文章相关
  • 收稿日期:  2018-09-18
  • 修回日期:  2018-11-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章