Efficient Synthesis of Tetrahydrofuran Spirooxindoles via One-Pot Reaction

Xin Guo Yajun Guo Dezhi Kong Huijie Lu Yuanzhao Hua Mincan Wang

Citation:  Guo Xin, Guo Yajun, Kong Dezhi, Lu Huijie, Hua Yuanzhao, Wang Mincan. Efficient Synthesis of Tetrahydrofuran Spirooxindoles via One-Pot Reaction[J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 1999-2007. doi: 10.6023/cjoc202003029 shu

四氢呋喃螺氧化吲哚衍生物的一锅法高效合成

    通讯作者: 华远照, hyzhao@zzu.edu.cn
    王敏灿, wangmincan@zzu.edu.cn
  • 基金项目:

    河南省教育厅 17B150014

    河南省教育厅资助项目 18B150028

    国家自然科学基金 21272216

    中国博士后科学基金 2017M622361

    国家自然科学基金(No.21272216)、中国博士后科学基金(No.2017M622361)和河南省教育厅(Nos.17B150014,18B150028)资助项目

摘要: 报道了α-羟基芳基酮和βγ-不饱和-α-酮酰胺发生的Michael/半缩酮化和傅-克(Friedel-Crafts)反应的两步一锅反应.该方法利用不包含氧化吲哚和四氢呋喃结构的链状底物,高效构建出包含螺碳原子、氧化吲哚环和四氢呋喃环的四氢呋喃螺氧化吲哚衍生物.

English

  • Spirocyclic oxindoles are privileged structural motifs existing in a broad range of natural products and pharmaceuticals, which possess significant biological activities.[1] It has been shown that substituents and spatial structures greatly influence the properties of those compounds.[2] And potentially promising skeletons are those bearing a heteroatom (especially N or O) in the spiro stereocenter at the C(3) position of the oxindole.[3] Among various spirocyclic oxindoles, tetrahydrofuran spirooxindole derivatives have also attracted much attention of organic chemists for their potential biological activities. For example, spiro[furo-2, 3'-oxindole]s could inhibit the growth of lung adenocarcinoma (A549) cells and hepatocellular carcinoma (HepG2) cells.[4] Consequently, a lot of elegant methods for their generation have been developed.[5]

    Among these documented methods, there are two pathways to access tetrahydrofuran spirooxindoles. One method for the synthesis of tetrahydrofuran spirooxindoles starts with isatins or 3-hydroxy-2-oxindoles containing ring A, followed by the construction of the spiro-carbon center and the formation of ring B (Pathway a, Scheme 1">Scheme 1).[6] The other needs readily available B-ring-containing amides to construct spiro-carbon and form ring A (Pathway b, Scheme 1">Scheme 1).[7] Only one ring is built and the other has already existed in one of the substrates in both above strategies. Meanwhile, sometimes these strategies have some inherent drawbacks, such as harsh reaction conditions, multiple operation procedures, poor compatibility of functional groups, and poor availability of the starting material to diversify the molecular structure. It is highly desirable and challenging to develop simple and integrated methods for the construction of a spiro-carbon center, ring A, and ring B in one-pot reaction.

    Scheme1

    Scheme1.  Construction of tetrahydrofuran spirooxindoles

    Recently, our group has endeavored to develop the applications of metal-catalysts.[8] And we have successfully realized some dinuclear metal-catalytic asymmetric cascade reactions for the synthesis of structurally novel and functionalized compounds, [9] such as Michael/hemiketali- zation to construct five- or six-membered oxygenated het-erocycles, [9a-9b] phospha-Michael/Michael cascade reaction for the synthesis of 1, 2, 3-trisubstituted indanes, [9c] Kno- evenagel/Michael/cyclization for the synthesis of dihydrofuran spirooxindoles, [9d] Michael/transesterification for the formation of spiro-indanone γ-butyrolactones, [9e] and asy- mmetric exo′-selective [3+2] cycloaddition to construct trifluoromethyl-substituted 2, 3-pyrrolidinyl dispirooxindoles.[9f] Particularly, we recently demonstrated that β, γ-unsaturated α-ketoamides could serve as especially appropriate Michael acceptors for the enantioselective construction of dispirocyclic oxindoles through cascade Michael/cyclization/Friedel-Crafts reaction.[9g-9h]

    As a continuation, we envisioned that the reaction of α-hydroxy aryl ketones 1 with β, γ-unsaturated α-ketoa- mides 2 may provide a straightforward approach to construct multisubstituted tetrahydrofuran spirooxindoles in one pot reaction. Herein we wish to report our progress with acceptable results in this area.[10]

    Initially, α-hydroxy aryl ketone 1a and β, γ-unsaturated α-ketoamide 2a were chosen as model substrates for optimization studies (Table 1). Reactions were conducted in dichloromethane (DCM) at room temperature for 24 h. However, no obvious reaction occurred when ZnCl2 (10 mol%) was used as catalyst (Table 1, Entry 1). A number of Lewis acids, such as FeCl3, Zn(OTf)2, Zn(OAc)2, Cu(OTf)2, Cu(OAc)2, Mn(OAc)2, La(OAc)2, and so on, were also tested, and none of them could catalyze the model reaction (Table 1, Entries 1~7). Then, some bases were employed as catalysts in this model reaction. Fortunately, the product 3 was obtained in 49% isolated yield when NaOH was used (Table 1, Entry 8). Encouraged by this, KOH and CH3ONa were examined subsequently, and the yields of product 3 were improved to 49% and 70%, respectively (Table 1, Entries 9 and 10). A Brø nsted base ZnEt2 was also evaluated, and gave the product 3 in 81% yield (Table 1, Entry 11). However, no reaction occurred when Lewis base NEt3 was used as catalyst (Table 1, Entry 12).

    Table 1

    Table 1.  Optimization of the reaction conditionsa
    下载: 导出CSV
    Entry Catalyst x/mol% Solvent Yield/% of 3 Yield/% of 4/4' (4/4')
    1 ZnCl2 10 CH2Cl2 Trace
    2 FeCl3 10 CH2Cl2 NR
    3 Zn(OTf)2 10 CH2Cl2 NR
    4 Cu(OTf)2 10 CH2Cl2 NR
    5 La(OAc)3 10 CH2Cl2 NR
    6 Co(OAc)2 10 CH2Cl2 NR
    7 Zn(OAc)2 10 CH2Cl2 NR
    8 NaOH 10 CH2Cl2 45
    9 KOH 10 CH2Cl2 49
    10 CH3ONa 10 CH2Cl2 70
    11 ZnEt2 10 CH2Cl2 81
    12 NEt3 10 CH2Cl2 NR
    13 ZnEt2 10 THF 62
    14 ZnEt2 10 Toluene 64
    15 ZnEt2 10 Benzene 74
    16 ZnEt2 10 CHCl3 76
    17 ZnEt2 10 CH3CN 79
    18b ZnEt2 5 CH2Cl2 76
    19c ZnEt2 20 CH2Cl2 88
    20c ZnEt2 30 CH2Cl2 88
    21d, e ZnEt2 20 CH2Cl2 60 (32/28)
    22d, f ZnEt2 20 CH2Cl2 71 (39/32)
    23d, g ZnEt2 20 CH2Cl2 84 (46/38)
    a Unless otherwise noted, all the reactions were conducted with 10 mol% catalyst, 0.20 mmol of 1, and 0.21 mmol of 2 in 2 mL of solvent at 20 ℃ for 24 h. b Reaction time was 40 h. c Reaction time was 6 h. d 6 h later, acid was added at 0 ℃ and the mixture was stirred for another 1 h. e Two drops of H2SO4 was added. f 0.5 mL of HCl was added. g 0.5 mL of CF3COOH (TFA) was added.

    Next, the evaluation of different solvents, including tetrahydrofuran (THF), toluene, benzene, CHCl3, and CH3CN indicated that CH2Cl2 was the optimal solvent which gave the product 3 in 81% yield (Table 1, Entries 11, 13~17). When the catalyst loading amount was lowered to 5 mol%, the yield of product 3 was decreased to 76% and the reaction time was prolonged to 48 h. Once increasing the catalyst loading amount to 20 mol%, the yield of product 3 was increased to 88% in 6 h. While the yield was not further improved when 30 mol% catalyst loading was employed, which indicated that 20 mol% of ZnEt2 was the best choice (Table 1, Entries 18~20).

    The 1H NMR and 13C NMR spectra revealed that product 3 was obtained as a mixture of the chain structure (Michael addition product) and the cyclic structure (Michael/hemi- ketalization product).[10] There was a dynamic balance between the chain structure and the cyclic structure, which led to the difficulty to purify and characterize. It was found that this mixture could give the title compound tetrahydrofuran spirooxindole 4/4' through an intramolecular Friedel-Crafts reaction, when it was treated with H2SO4 (Table 1, Entry 21). Then, concentrated hydrochloric acid (HCl) and CF3COOH (TFA) were evaluated, and TFA was the optimal choice giving product 4/4' in 84% total yields through 2 steps one-pot reaction (Table 1, Entries 22 and 23). Although the diastereoselectivity was low, the two isomers of anti-4aa and syn-4aa' could be separated by flash column chromatography on silica gel.

    Thus the optimal conditions were determined as follows (Table 1, Entry 23): 20 mol% ZnEt2, 2 mL of CH2Cl2, α-hydroxy aryl ketones 1 (0.20 mmol), β, γ-unsaturated α-ketoamide 2 (0.21 mmol) at 20 ℃ for 6 h. Then 0.5 mL of TFA was dropwise added at 0 ℃ and stirred for another 1 h.

    The substrate scope of this multisubstituted tetrahydrofuran spirooxindoles forming reaction was explored under the optimal conditions. Using 1a as a model substrate, the N-protecting groups R1 of β, γ-unsaturated-α-ketoamides 2 was first examined. The experiment results revealed that the steric bulk of the substituent at N atom in 2a~2c had an obvious influence on the yield in this reaction. When substituent R1 was changed from Me to Et or Bn, the total yields of products 4/4' decreased to 53% and 51% (Table 2, Entries 2 and 3). The reason might owe to the larger steric hindrance of Et or Bn.

    Table 2

    Table 2.  Substrate scope of the reactiona
    下载: 导出CSV
    Entry Ar1 R1 Ar2 R2 Product Yield/% (4/4')
    1 Ph Me Ph H 4aa/4aa' 84 (46/38)
    2 Ph Et Ph H 4ab/4ab' 53 (22/31)
    3 Ph Bn Ph H 4ac/4ac' 51 (25/26)
    4 Ph Me Ph F 4ad/4ad' 86 (56/30)
    5 Ph Me Ph Cl 4ae/4ae' 87 (57/30)
    6 Ph Me Ph Br 4af/4af' 61 (39/22)
    7 Ph Me Ph Me 4ag/4ag' 74 (44/30)
    8 Ph Me Ph MeO 4ah/4ah' 76 (37/39)
    9 Ph Me 4-O2NC6H4 H 4ai/4ai' 51 (24/27)
    10 Ph Me 4-FC6H4 H 4aj/4aj' 77 (39/38)
    11 Ph Me 4-ClC6H4 H 4ak/4ak' 88 (44/44)
    12 Ph Me 4-BrC6H4 H 4al/4al' 94 (61/33)
    13 Ph Me 4-MeC6H4 H 4am/4am' 79 (41/38)
    14 Ph Me 4-MeOC6H4 H 4an/4an' 72 (39/33)
    15 Ph Me 3-BrC6H4 H 4ao/4ao' 72 (49/23)
    16 Ph Me 2-BrC6H4 H 4ap/4ap' 79 (50/29)
    17 Ph Me 1-Naphthyl H 4aq/4aq' 75 (37/38)
    18 Ph Me 2-Naphthyl H 4ar/4ar' 84 (58/26)
    19 Ph Me 2-Furyl H 4as/4as' 85 (43/42)
    20 4-FC6H4 Me Ph H 4ba/4ba' 87 (47/40)
    21 4-ClC6H4 Me Ph H 4ca/4ca' 92 (48/44)
    22 4-BrC6H4 Me Ph H 4da/4da' 94 (59/36)
    23 4-MeC6H4 Me Ph H 4ea/4ea' 98 (46/42)
    24 4-MeOC6H4 Me Ph H 4fa/4fa' 91 (62/29)
    25 3-BrC6H4 Me Ph H 4ga/4ga' 80 (48/42)
    26 3-MeOC6H4 Me Ph H 4ha/4ha' 78 (41/37)
    27 2-MeOC6H4 Me Ph H 4ia/4ia' 71 (42/29)
    a Unless otherwise noted, all the reactions were conducted with 20 mol% catalyst, 0.20 mmol of 1, and 0.21 mmol of 2 in 2 mL of CH2Cl2 at 20 ℃. 6 h later, 0.5 mL of TFA was dropwise added at 0 ℃.

    Then a series of N-methyl β, γ-unsaturated-α-ketoamides 2 bearing various substituents attached on the phenyl ring were investigated. Substrates 2d~2h with electron-with- drawing halogen groups (F, Cl or Br) or electron-donating groups (Me or MeO) at the para-position of the N-aromatic ring reacted with 1a efficiently under the standard conditions. And the corresponding products 4/4' were ob- tained in 62%~87% total yields (Table 2, Entries 4~8).

    The effect of the para-substituent of the phenyl ring (Ar2) was also explored. Various functional groups, both the electron-withdrawing groups (NO2, F, Cl or Br) and the electron-donating groups (Me or MeO), were well tolerated (Table 2, Entries 9~14). Meanwhile, it was also observed that nitro group of Ar2 affected the yield obviously (51%, Table 2, Entry 9). Substrates 2o and 2p with Br substituent at the meta- or ortho-position of Ar2 provided the corres- ponding products 4/4' in 72% and 79% total yields, respectively (Table 2, Entries 15, 16). Notably, 1-naphthyl and 2-naphthyl substituted ketoamides 2q~2r took part in this reaction successfully, giving corresponding products 4/4' in total yields of 75% and 84%, respectively. Further study showed that 2-furyl substituted ketoamide 2s was also a suitable substrate to react with 1a in 85% total yields.

    The reaction of ketoamide 2a with various nucleophiles was next investigated. A series of nucleophiles 1b~1i bearing either electron-withdrawing groups (F, Cl and Br) or electron-donating groups (Me and MeO) at aromatic ring Ar1 underwent the reaction efficiently, giving 71%~95% total yields (Table 2, Entries 20~27).

    To determine the relative configuration of the products, product 4al' was treated with hydroxylamine hydrochloride and NaOAc in CH3OH, which led to the corresponding product of oxime 5' in 96% yield (Scheme 2">Scheme 2). A single crystal of compound 5' was obtained for X-ray crystallographic analysis (Figure 1).[11] Thus, the relative stereochemistry of 4al' could be deduced.

    Scheme2

    Scheme2.  Derivatization of product 4al'

    Figure 1

    Figure 1.  X-ray structure of compound 5'

    In conclusion, we have developed an efficient method for the direct formation of tetrahydrofuran spirooxindoles, including the constructions of a spiro-carbon center, an oxindole ring, and a tetrahydrofuran ring in one-pot reaction. This chemistry is based on Michael/hemiketalization and Fridel-Crafts reaction of α-hydroxy aryl ketones and β, γ-unsaturated α-ketoamides. Using ZnEt2 and TFA as catalysts, the one-pot reaction proceeded efficiently and delivered a wide range of tetrahydrofuran spirooxindoles in moderate to good yields. We expect that this novel protocol would provide a convenient and versatile synthetic approach toward structurally diverse tetrahydrofuran spirooxindoles using simple chain substrates.

    The melting point (m.p.) was determined on an electrothermal digital melting point apparatus and uncorrected. NMR spectra were recorded on an NMR spectrometer using CDCl3 or DMSO as the solvents and TMS as an internal standard (400 MHz for 1H NMR, 100 MHz for 13C NMR). HRMS was performed on a Q-TOF Micro LC/MS System ESI spectrometer.

    In a flame-dried Schlenk tube, a solution of diethylzinc (0.04 mL, 1.0 mol/L in hexane, 0.04 mmol) was added to a solution of compound 1 (0.2 mmol) and substrate 2 (0.21 mmol) in dry CH2Cl2 (2 mL) under nitrogen at 20 ℃. The mixture was stirred for 6 h to complete the Michael/ hemiketalization reaction (step 1, detected by TLC). Then, 0.5 mL of TFA was added dropwise to the mixture at 0 ℃, and stirred for another 1 h at room temperature. Finally, the solution was diluted with a saturated solution of Na2CO3 and extracted with CH2Cl2 (10 mL×3). The combined organic layer was dried over MgSO4 and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to give products 4aa[10] and 4aa', respectively.

    5-Benzoyl-1'-methyl-4-phenyl-4, 5-dihydro-3H-spiro- [furan-2, 3'-indolin]-2'-one (4aa'): White solid (38% yield), m.p. 209~211 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.70 (d, J=7.6 Hz, 2H), 7.51 (d, J=7.3 Hz, 1H), 7.45~7.25 (m, 6H), 7.18~7.00 (m, 4H), 6.86 (d, J=7.8 Hz, 1H), 5.97 (d, J=8.2 Hz, 1H), 4.38 (q, J=8.3 Hz, 1H), 3.23 (s, 3H), 3.08 (dd, J=13.0, 8.7 Hz, 1H), 2.69 (dd, J=12.9, 8.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 195.9, 174.7, 143.55, 138.6, 136.5, 132.8, 131.5, 130.1, 128.7, 128.4, 128.3, 128.2, 127.1, 123.4, 123.0, 108.7, 85.2, 83.6, 49.0, 41.9, 26.5; HRMS (ESI) calcd for C25H22NO3 [M+H]+ 384.1594, found 384.1596.

    5-Benzoyl-1'-ethyl-4-phenyl-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4ab'): White solid (31% yield), m.p. 200~202 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.69 (d, J=7.7 Hz, 2H), 7.52 (d, J=7.3 Hz, 1H), 7.45~7.22 (m, 6H), 7.17~6.97 (m, 4H), 6.87 (d, J=7.8 Hz, 1H), 5.98 (d, J=8.2 Hz, 1H), 4.37 (q, J=8.3 Hz, 1H), 3.78 (q, J=7.1 Hz, 2H), 3.08 (dd, J=12.8, 8.7 Hz, 1H), 2.68 (dd, J=12.9, 8.3 Hz, 1H), 1.29 (t, J=7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ: 196.3, 174.7, 143.0, 138.9, 137.0, 133.1, 132.2, 130.3, 129.0, 128.8, 128.6, 128.6, 127.4, 123.9, 123.2, 109.2, 85.6, 84.0, 49.3, 42.5, 35.5, 13.0; HRMS (ESI) calcd for C26H24NO3 [M+H]+ 398.1751, found 398.1754.

    5-Benzoyl-1'-benzyl-4-phenyl-4, 5-dihydro-3H-spiro-[furan-2, 3'-indolin]-2'-one (4ac'): White solid (26% yield), m.p. 175~177 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.73 (d, J=7.6 Hz, 2H), 7.54 (d, J=7.2 Hz, 1H), 7.48~7.41 (m, 1H), 7.38~7.21 (m, 10H), 7.19~7.04 (m, 4H), 6.77 (d, J=7.8 Hz, 1H), 6.03 (d, J=8.3 Hz, 1H), 4.95 (dd, J=54.7, 15.7 Hz, 2H), 4.43 (q, J=8.4 Hz, 1H), 3.19 (dd, J=12.8, 9.0 Hz, 1H), 2.74 (dd, J=12.8, 8.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 196.3, 175.4, 142.9, 138.7, 136.9, 135.9, 133.1, 131.9, 130.3, 129.2, 129.0, 128.8, 128.6, 128.5, 128.1, 127.8, 127.5, 123.8, 123.4, 110.1, 85.5, 84.1, 49.4, 44.5, 42.4; HRMS (ESI) calcd for C31H26NO3 [M+H]+ 460.1907, found 460.1909.

    5-Benzoyl-5'-fluoro-1'-methyl-4-phenyl-4, 5-dihydro-3H- spiro[furan-2, 3'-indolin]-2'-one (4ad'): White solid (30% yield), m.p. 196~198 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.67 (d, J=7.7 Hz, 2H), 7.50~7.36 (m, 1H), 7.35~7.21 (m, 5H), 7.19~7.01 (m, 4H), 6.88~6.71 (m, 1H), 5.94 (d, J=8.3 Hz, 1H), 4.33 (dd, J=16.8, 8.4 Hz, 1H), 3.21 (s, 3H), 3.10 (dd, J=12.8, 9.1 Hz, 1H), 2.65 (dd, J=12.9, 8.1 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 195.6, 174.5, 159.3 (d, J=240.3 Hz), 139.48 (d, J=1.9 Hz), 138.0, 136.5, 132.8, 128.6, 128.4, 128.3, 128.2, 127.2, 116.1, (d, J=23.2 Hz), 111.7 (d, J=24.7 Hz), 109.2 (d, J=7.87 Hz), 84.98, 83.7, 48.9, 41.8, 26.6; HRMS (ESI) calcd for C25H21FNO3 [M+H]+ 402.1500, found 402.1503.

    5-Benzoyl-5'-chloro-1'-methyl-4-phenyl-4, 5-dihydro-3H- spiro[furan-2, 3'-indolin]-2'-one (4ae'): White solid (30% yield), m.p. 180~182 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.71~7.70 (m, 2H), 7.56 (d, J=7.7 Hz, 2H), 7.41~7.34 (m, 2H), 7.31~7.26 (m, 3H), 7.21~7.12 (m, 2H), 6.96~6.82 (m, 2H), 6.16 (d, J=8.5 Hz, 1H), 4.89 (dt, J=10.5, 8.2 Hz, 1H), 3.23 (s, 3H), 3.16 (dd, J=20.6, 8.3 Hz, 2H), 2.52 (dd, J=12.4, 7.3 Hz, 1H); 13C NMR (151 MHz, CDCl3) δ: 196.4, 174.7, 143.4, 136.7, 136.2, 132.8, 132.3, 131.2, 130.0, 129.7, 128.7, 128.3, 128.2, 127.7, 125.3, 123.4, 123.1, 108.6, 83.4, 81.9, 47.4, 40.6, 29.7, 26.5; HRMS (ESI) calcd for C25H21ClNO3 [M+H]+ 418.1204, found 418.1205.

    5-Benzoyl-5'-bromo-1'-methyl-4-phenyl-4, 5-dihydro-3H- spiro[furan-2, 3'-indolin]-2'-one (4af'): White solid (23% yield), m.p. 203~205 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.57~7.40 (m, 3H), 7.36~7.28 (m, 1H), 7.28~7.18 (m, 1H), 7.17~7.03 (m, 4H), 6.95~6.80 (m, 3H), 6.62 (d, J=8.3 Hz, 1H), 5.84 (d, J=8.4 Hz, 1H), 4.31~4.16 (m, 1H), 3.03 (s, 3H), 2.85 (dd, J=12.9, 9.1 Hz, 1H), 2.49 (dd, J=13.0, 8.3 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 196.2, 174.5, 142.2, 137.97, 136.3, 133.3, 132.7, 132.6, 128.4, 128.1, 127.97, 127.95, 126.9, 126.5, 115.5, 110.1, 84.8, 83.5, 48.6, 41.9, 26.1; HRMS (ESI) calcd for C25H21BrN- O3 [M+H]+ 462.0699, found 462.0700.

    5-Benzoyl-1', 5'-dimethyl-4-phenyl-4, 5-dihydro-3H- spiro[furan-2, 3'-indolin]-2'-one (4ag'): White solid (30% yield), m.p. 201~203 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.71 (d, J=7.6 Hz, 2H), 7.47~7.36 (m, 1H), 7.35~7.22 (m, 5H), 7.20~7.02 (m, 4H), 6.73 (d, J=7.9 Hz, 1H), 5.95 (d, J=8.2 Hz, 1H), 4.38 (q, J=8.4 Hz, 1H), 3.19 (s, 3H), 3.07 (dd, J=12.9, 8.7 Hz, 1H), 2.67 (dd, J=12.9, 8.3 Hz, 1H), 2.38 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 195.98, 174.7, 141.2, 138.6, 136.6, 132.7, 132.6, 131.5, 130.2, 128.7, 128.5, 128.2, 128.2, 127.0, 124.2, 108.4, 85.3, 83.8, 48.99, 41.9, 26.5, 21.2; HRMS (ESI) calcd for C26H24NO3 [M+H]+ 398.1751, found 398.1753.

    5-Benzoyl-5'-methoxy-1'-methyl-4-phenyl-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4ah'): White solid (39% yield), m.p. 215~217 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.69 (d, J=7.6 Hz, 2H), 7.45~7.35 (m, 1H), 7.34~7.22 (m, 4H), 7.16~6.99 (m, 4H), 6.91~6.78 (m, 1H), 6.79~6.70 (m, 1H), 5.93 (d, J=8.3 Hz, 1H), 4.34 (q, J=8.4 Hz, 1H), 3.82 (s, 3H), 3.18 (s, 3H), 3.07 (dd, J=12.9, 8.7 Hz, 1H), 2.66 (dd, J=12.9, 8.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 195.8, 174.4, 156.3, 138.5, 136.99, 136.5, 132.7, 128.6, 128.4, 128.2, 128.2, 127.0, 113.2, 111.8, 108.9, 85.2, 83.9, 56.1, 48.9, 41.9, 26.6; HRMS (ESI) calcd for C26H24NO4 [M+H]+ 414.1700, found 414.1701.

    5-Benzoyl-1'-methyl-4-(4-nitrophenyl)-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4ai'): Yellow solid (27% yield), m.p. 135~137 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.89~7.87 (m, 2H), 7.47~7.44 (m, 2H), 7.36~7.33 (m, 3H), 7.29~7.27 (m, 1H), 7.12~7.08 (m, 1H), 7.04~7.03 (m, 1H), 6.84 (d, J=7.8 Hz, 1H), 6.26 (d, J=3.3 Hz, 1H), 6.11~6.10 (m, 1H), 5.87 (d, J=8.5 Hz, 1H), 4.56~4.49 (m, 1H), 3.22 (s, 3H), 3.09 (dd, J=12.9, 8.7 Hz, 1H), 2.52 (dd, J=12.9, 8.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 196.1, 174.4, 150.7, 143.4 141.5, 135.8, 132.8, 130.99, 130.1, 129.4, 128.9, 128.7, 128.6, 128.1, 125.8, 123.2, 123.0, 110.5, 108.6, 107.9, 83.6, 83.1, 42.7, 39.5, 26.5; HRMS (ESI) calcd for C25H21N2O5 [M+H]+ 429.1445, found 429.1445.

    5-Benzoyl-4-(4-fluorophenyl)-1'-methyl-4, 5-dihydro- 3H-spiro[furan-2, 3'-indolin]-2'-one (4aj'): White solid (38% yield), m.p. 220~222 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.95 (d, J=7.7 Hz, 2H), 7.52~7.42 (m, 4H), 7.39~7.26 (m, 3H), 7.08 (t, J=7.5 Hz, 1H), 7.00 (t, J=8.5 Hz, 2H), 6.80 (d, J=7.8 Hz, 1H), 5.71 (d, J=9.6 Hz, 1H), 4.31 (dd, J=20.0, 9.5 Hz, 1H), 3.21 (s, 3H), 2.89~2.79 (m, 1H), 2.66 (dd, J12.8, 8.7 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 195.2, 177.1, 162.1 (d, J=244.3 Hz), 143.4, 135.5, 134.2 (d, J=3.2 Hz), 133.7, 130.1, 130.0, 129.9, 129.8, 129.5, 128.6, 124.3, 123.5, 115.7 (d, J=21.2 Hz), 108.6, 86.6, 83.9, 46.6, 43.96, 26.4; HRMS (ESI) calcd for C25H21FNO3 [M+H]+ 402.1500, found 402.1503.

    5-Benzoyl-4-(4-chlorophenyl)-1'-methyl-4, 5-dihydro-3H- spiro[furan-2, 3'-indolin]-2'-one (4ak'): White solid (44% yield), m.p. 221~223 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.72~7.71 (m, 2H), 7.50~7.44 (m, 2H), 7.38~7.26 (m, 5H), 7.14~7.08 (m, 3H), 6.86 (d, J=7.8 Hz, 1H), 5.94 (d, J=7.9 Hz, 1H), 4.31 (q, J=7.9 Hz, 1H), 3.23 (s, 3H), 2.98 (dd, J=13.2, 7.5 Hz, 1H), 2.74 (dd, J=13.2, 8.5 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 195.5, 174.6, 143.5, 137.5, 136.4, 132.96, 132.9, 131.4, 130.1, 130.0, 128.4, 128.3, 123.3, 123.1, 108.7, 85.5, 83.5, 48.3, 42.1, 26.5; HRMS (ESI) calcd for C25H21ClNO3 [M+H]+ 418.1204, found 418.1205.

    5-Benzoyl-4-(4-bromophenyl)-1'-methyl-4, 5-dihydro-3H- spiro[furan-2, 3'-indolin]-2'-one (4al'): White solid (33% yield), m.p. 180~182 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.69 (d, J=7.0 Hz, 2H), 7.49~7.44 (m, 2H), 7.38~7.30 (m, 3H), 7.24~7.20 (m, 4H), 7.14~7.10 (m, 1H), 6.86 (d, J=7.6 Hz, 1H), 5.96 (d, J=7.7 Hz, 1H), 4.31 (dd, J=14.8, 7.2 Hz, 1H), 3.22 (m, 3H), 3.00~2.95 (m, 1H), 2.71 (dd, J=12.2, 8.7 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 195.9, 174.9, 143.4, 137.7, 136.2, 133.1, 131.3, 130.3, 130.2, 128.4, 128.3, 123.3, 123.2, 121.1, 108.8, 85.2, 83.6, 48.4, 42.0, 26.5; HRMS (ESI) calcd for C25H21BrNO3 [M+H]+ 462.0699, found 462.0700.

    5-Benzoyl-1'-methyl-4-(p-tolyl)-4, 5-dihydro-3H-spiro- [furan-2, 3'-indolin]-2'-one (4am'): White solid (38% yield), m.p. 197~199 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.72 (d, J=7.7 Hz, 2H), 7.50 (d, J=7.3 Hz, 1H), 7.45~7.38 (m, 1H), 7.38~7.32 (m, 1H), 7.31~7.26 (m, 2H), 7.22~7.15 (m, 2H), 7.14~7.07 (m, 1H), 6.88 (dd, J=28.0, 7.8 Hz, 3H), 5.93 (d, J=8.3 Hz, 1H), 4.36 (q, J=8.4 Hz, 1H), 3.22 (s, 3H), 3.07 (dd, J=12.8, 9.0 Hz, 1H), 2.65 (dd, J=12.9, 8.1 Hz, 1H), 2.19 (s, 3H); 13C NMR (101 MHz, CDCl3)δ: 196.3, 175.1, 143.97, 137.2, 136.9, 135.7, 132.8, 132.0, 130.3, 129.2, 128.9, 128.9, 128.4, 123.7, 123.3, 108.9, 85.7, 84.0, 49.1, 42.3, 26.7, 21.2; HRMS (ESI) calcd for C26H24- NO3 [M+H]+ 398.1751, found 398.1753.

    5-Benzoyl-4-(4-methoxyphenyl)-1'-methyl-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4an'): White solid (33% yield), m.p. 189~191 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.70 (d, J=7.4 Hz, 2H), 7.50 (d, J=7.1 Hz, 1H), 7.45~7.39 (m, 1H), 7.37~7.32 (m, 1H), 7.32~7.27 (m, 2H), 7.25~7.20 (m, 2H), 7.11 (t, J=7.5 Hz, 1H), 6.85 (d, J=7.7 Hz, 1H), 6.65 (d, J=8.6 Hz, 2H), 5.93 (d, J=8.3 Hz, 1H), 4.34 (q, J=8.3 Hz, 1H), 3.69 (s, 3H), 3.23 (s, 3H), 3.03 (dd, J=12.9, 8.5 Hz, 1H), 2.67 (dd, J=13.0, 8.4 Hz, 1H); 13C NMR (151 MHz, CDCl3) δ: 196.1, 174.8, 158.5, 143.5, 136.6, 132.7, 131.6, 130.5, 129.97, 129.7, 128.4, 128.1, 123.3, 122.97, 113.6, 108.6, 85.3, 83.5, 55.2, 48.3, 42.2, 26.5; HRMS (ESI) calcd for C26H24NO4 [M+H]+ 414.1700, found 414.1701.

    5-Benzoyl-4-(3-bromophenyl)-1'-methyl-4, 5-dihydro-3H- spiro[furan-2, 3'-indolin]-2'-one (4ao'): White solid (23% yield), m.p. 206~208 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.71 (d, J=7.4 Hz, 2H), 7.51~7.43 (m, 2H), 7.41~7.29 (m, 5H), 7.20 (d, J=7.8 Hz, 1H), 7.11 (t, J=7.3 Hz, 1H), 7.02 (t, J=7.8 Hz, 1H), 6.85 (d, J=7.7 Hz, 1H), 5.94 (d, J=7.9 Hz, 1H), 4.28 (q, J=8.0 Hz, 1H), 3.22 (s, 3H), 3.01 (dd, J=13.0, 8.1 Hz, 1H), 2.70 (dd, J=13.1, 8.3 Hz, 1H); 13C NMR (151 MHz, CDCl3) δ: 195.5, 174.6, 143.5, 141.1, 136.4, 132.98, 131.8, 131.3, 130.1, 130.1, 129.9, 128.4, 128.3, 127.2, 123.3, 123.1, 122.1, 108.7, 85.3, 83.5, 48.5, 41.6, 26.5; HRMS (ESI) calcd for C25H21BrNO3 [M+H]+ 462.0699, found 462.0700.

    5-Benzoyl-4-(2-bromophenyl)-1'-methyl-4, 5-dihydro-3H- spiro[furan-2, 3'-indolin]-2'-one (4ap'): White solid (29% yield), m.p. 203~205 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.71 (d, J=7.5 Hz, 2H), 7.56 (d, J=7.6 Hz, 2H), 7.43~7.34 (m, 2H), 7.30~7.26 (m, 3H), 7.22~7.11 (m, 2H), 6.96~6.90 (m, 1H), 6.86 (d, J=7.7 Hz, 1H), 6.16 (d, J=8.5 Hz, 1H), 4.89 (dd, J=18.4, 8.1 Hz, 1H), 3.23 (s, 3H), 3.19~3.13 (m, 1H), 2.52 (dd, J=12.4, 7.3 Hz, 1H); 13C NMR (151 MHz, CDCl3) δ: 196.3, 174.7, 143.4, 136.7, 136.2, 132.8, 132.3, 131.2, 130.1, 129.7, 128.7, 128.3, 128.2, 127.7, 125.3, 123.4, 123.1, 108.6, 83.4, 81.9, 47.4, 40.7, 26.5; HRMS (ESI) calcd for C25H21BrNO3 [M+H]+ 462.0699, found 462.0700.

    5-Benzoyl-1'-methyl-4-(naphthalen-1-yl)-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4aq'): White solid (38% yield), m.p. 197~199 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.71~7.60 (m, 6H), 7.54~7.39 (m, 2H), 7.35~7.34 (m, 4H), 7.21~7.12 (m, 3H), 6.87 (d, J=7.8 Hz, 1H), 6.04 (d, J=8.2 Hz, 1H), 4.54 (q, J=8.3 Hz, 1H), 3.25 (s, 3H), 3.20 (dd, J=12.9, 8.7 Hz, 1H), 2.76 (dd, J=13.0, 8.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 195.9, 174.8, 143.5, 136.5, 135.97, 133.1, 132.6, 132.4, 131.5, 130.0, 128.4, 128.1, 127.97, 127.8, 127.5, 126.6, 125.9, 125.7, 123.3, 123.0, 108.7, 85.3, 83.7, 49.1, 41.9, 26.5; HRMS (ESI) calcd for C29H24NO3 [M+H]+434.1751, found 434.1753.

    5-Benzoyl-1'-methyl-4-(naphthalen-2-yl)-4, 5-dihydro-3-H-spiro[furan-2, 3'-indolin]-2'-one (4ar'): White solid (26% yield), m.p. 233~235 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.71~7.60 (m, 6H), 7.56~7.49 (m, 2H), 7.38~7.31 (m, 4H), 7.21~7.11 (m, 3H), 6.87 (d, J=7.8 Hz, 1H), 6.04 (d, J=8.2 Hz, 1H), 4.54 (q, J=8.4 Hz, 1H), 3.25 (s, 3H), 3.20 (dd, J=12.9, 8.7 Hz, 1H), 2.76 (dd, J=12.9, 8.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 195.9, 174.8, 143.5, 136.5, 135.99, 133.1, 132.6, 132.4, 131.5, 130.0, 128.4, 128.1, 127.96, 127.8, 127.5, 126.6, 125.9, 125.7, 123.3, 123.0, 108.7, 85.3, 83.7, 49.1, 41.9, 26.5; HRMS (ESI) calcd for C29H24NO3 [M+H]+ 434.1751, found 434.1753.

    5-Benzoyl-4-(furan-2-yl)-1'-methyl-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4as'): White solid (42% yield), m.p. 207~209 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.02~8.00 (m, 2H), 7.75 (dd, J=8.3, 1.1 Hz, 2H), 7.58~7.56 (m, 2H), 7.50~7.47 (m, 2H), 7.41~7.32 (m, 3H), 7.15~7.11 (m, 1H), 6.88 (d, J=7.8 Hz, 1H), 5.98 (d, J=7.4 Hz, 1H), 4.39 (dd, J=15.6, 7.1 Hz, 1H), 3.23 (s, 3H), 2.99 (dd, J=13.3, 6.7 Hz, 1H), 2.85 (dd, J=13.3, 8.7 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 194.8, 174.6, 147.3, 146.8, 143.6, 135.96, 133.4, 131.1, 130.4, 129.6, 128.51, 128.45, 123.4, 123.3, 123.2, 108.9, 85.8, 83.5, 48.5, 41.9, 26.5; HRMS (ESI) calcd for C23H20NO4 [M+H]+ 374.1387, found 374.1388.

    5-(4-Fluorobenzoyl)-1'-methyl-4-phenyl-4, 5-dihydro-3H- spiro[furan-2, 3'-indolin]-2'-one (4ba'): White solid (40% yield), m.p. 197~199 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.81~7.77 (m, 2H), 7.50 (d, J=7.2 Hz, 1H), 7.38~7.31 (m, 3H), 7.15~7.06 (m, 4H), 6.97~6.92 (m, 2H), 6.86 (d, J=7.8 Hz, 1H), 5.88 (d, J=8.3 Hz, 1H), 4.38 (q, J=8.4 Hz, 1H), 3.23 (s, 3H), 3.09 (dd, J=12.9, 8.9 Hz, 1H), 2.73~2.61 (m, 1H); 13C NMR (101 MHz, CDCl3) δ: 194.7, 174.8, 165.4 (d, J=253.2 Hz), 143.5, 138.2, 132.93 (d, J=3.1 Hz), 131.3 (d, J=9.3 Hz), 131.33, 130.1, 128.6, 128.3, 127.1, 123.3, 123.1, 115.2 (d, J=21.8 Hz), 108.7, 85.5, 83.8, 48.97, 41.5, 26.5; HRMS (ESI) calcd for C25H21FN- O3 [M+H]+ 402.1500, found 402.1503.

    5-(4-chlorobenzoyl)-1'-methyl-4-phenyl-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4ca'): White solid (44% yield), m.p. 178~180 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.69 (d, J=8.6 Hz, 2H), 7.51~7.48 (m, 1H), 7.39~7.30 (m, 3H), 7.27~7.23 (m, 2H), 7.17~7.08 (m, 4H), 6.86 (d, J=7.8 Hz, 1H), 5.87 (t, J=6.8 Hz, 1H), 4.49~4.27 (m, 1H), 3.23 (s, 3H), 3.08 (dd, J=12.9, 9.0 Hz, 1H), 2.67 (dd, J=12.9, 8.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 195.2, 174.8, 143.4, 139.1, 138.1, 134.8, 131.3, 130.1, 130.0, 129.8, 129.6, 129.4, 129.1, 128.6, 128.4, 128.3, 127.2, 123.3, 123.1, 108.7, 85.5, 83.8, 48.95, 41.5, 26.5; HRMS (ESI) calcd for C25H21ClNO3 [M+H]+ 418.1204, found 418.1205.

    5-(4-Bromobenzoyl)-1'-methyl-4-phenyl-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4da'): White solid (36% yield), m.p. 218~220 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.60 (t, J=5.4 Hz, 2H), 7.49 (d, J=7.2 Hz, 1H), 7.45~7.28 (m, 5H), 7.19~7.04 (m, 4H), 6.86 (d, J=7.8 Hz, 1H), 5.86 (d, J=8.3 Hz, 1H), 4.38 (q, J=8.4 Hz, 1H), 3.23 (s, 3H), 3.08 (dd, J=12.9, 9.0 Hz, 1H), 2.67 (dd, J=12.9, 8.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 195.4, 174.7, 143.5, 138.1, 135.2, 132.6, 131.4, 131.3, 130.1, 130.1, 129.8, 128.6, 128.3, 127.9, 127.2, 123.3, 123.1, 108.7, 85.5, 83.8, 48.9, 41.5, 26.5; HRMS (ESI) calcd for C25H21BrNO3 [M+H]+ 462.0699, found 462.0700.

    1'-Methyl-5-(4-methylbenzoyl)-4-phenyl-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4ea'): White solid (42% yield), m.p. 240~242 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.63 (d, J=8.2 Hz, 2H), 7.54~7.46 (m, 1H), 7.38~7.30 (m, 3H), 7.16~7.03 (m, 6H), 6.85 (d, J=7.8 Hz, 1H), 5.93 (d, J=8.2 Hz, 1H), 4.37 (q, J=8.4 Hz, 1H), 3.23 (s, 3H), 3.14~3.03 (m, 1H), 2.68 (dt, J=23.0, 11.5 Hz, 1H), 2.32 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 195.4, 174.7, 143.5, 143.5, 138.6, 133.99, 131.5, 129.97, 128.9, 128.6, 128.6, 128.2, 126.99, 123.3, 122.96, 108.6, 85.1, 83.5, 48.99, 41.96, 26.5, 21.6; HRMS (ESI) calcd for C26H24NO3 [M+H]+ 398.1751, found 398.1753.

    5-(4-Methoxybenzoyl)-1'-methyl-4-phenyl-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4fa'): White solid (29% yield), m.p. 205~207 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.74~7.68 (m, 2H), 7.50 (d, J=6.9 Hz, 1H), 7.45~7.39 (m, 1H), 7.38~7.32 (m, 1H), 7.32~7.26 (m, 2H), 7.25~7.21 (m, 2H), 7.11 (dd, J=11.0, 4.0 Hz, 1H), 6.85 (d, J=7.8 Hz, 1H), 6.68~6.60 (m, 2H), 5.93 (d, J=8.2 Hz, 1H), 4.34 (q, J=8.3 Hz, 1H), 3.68 (s, 3H), 3.23 (s, 3H), 3.02 (dd, J=13.0, 8.4 Hz, 1H), 2.68 (dd, J=13.0, 8.3 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 196.1, 174.7, 158.5, 143.5, 136.5, 132.7, 131.5, 130.5, 129.98, 129.7, 128.4, 128.2, 123.3, 122.98, 113.6, 108.6, 85.3, 83.5, 55.2, 48.3, 42.2, 26.5; HRMS (ESI) calcd for C26H24NO4 [M+H]+ 414.1700, found 414.1701.

    5-(3-Bromobenzoyl)-1'-methyl-4-phenyl-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4ga'): White solid (42% yield), m.p. 219~221 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.77~7.72 (m, 1H), 7.67 (d, J=7.8 Hz, 1H), 7.55~7.47 (m, 2H), 7.39~7.33 (m, 1H), 7.32~7.27 (m, 2H), 7.19~7.06 (m, 5H), 6.86 (d, J=7.8 Hz, 1H), 5.88 (d, J=8.3 Hz, 1H), 4.45~4.32 (m, 1H), 3.23 (s, 3H), 3.08 (dt, J=13.0, 6.5 Hz, 1H), 2.66 (dd, J=12.9, 8.1 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 194.9, 174.7, 143.4, 138.2, 137.9, 135.5, 131.4, 131.2, 130.1, 129.7, 128.5, 128.4, 127.3, 127.0, 123.3, 123.1, 122.4, 108.7, 85.1, 83.8, 48.9, 41.4, 26.5; HRMS (ESI) calcd for C25H21BrNO3 [M+H]+ 462.0699, found 462.0700.

    5-(3-Methoxybenzoyl)-1'-methyl-4-phenyl-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4ha'): White solid (37% yield), m.p. 170~172 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.53~7.47 (m, 1H), 7.40~7.28 (m, 4H), 7.25~7.04 (m, 6H), 7.03~6.93 (m, 1H), 6.91~6.78 (m, 1H), 5.84 (dd, J=87.2, 8.9 Hz, 1H), 4.44~4.23 (m, 1H), 3.74 (d, J=6.7 Hz, 3H), 3.23 (s, 3H), 3.09 (dd, J=12.9, 8.7 Hz, 1H), 2.69 (dd, J=12.9, 8.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 195.8, 174.7, 159.4, 143.5, 138.5, 137.9, 131.4, 130.0, 129.1, 128.8, 128.7, 128.2, 127.0, 123.3, 123.0, 120.9, 119.6, 112.4, 108.7, 85.2, 83.6, 55.4, 48.99, 41.8, 26.5; HRMS (ESI) calcd for C26H24NO4 [M+H]+ 414.1700, found 414.1701.

    5-(2-Methoxybenzoyl)-1'-methyl-4-phenyl-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (4ia'): White solid (29% yield), m.p. 158~160 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.47 (d, J=7.1 Hz, 1H), 7.38~7.23 (m, 4H), 7.15~6.99 (m, 5H), 6.89~6.76 (m, 2H), 6.76~6.68 (m, 1H), 6.16 (d, J=8.2 Hz, 1H), 4.27 (q, J=8.2 Hz, 1H), 3.90 (d, J=8.9 Hz, 3H), 3.23 (s, 3H), 2.94 (dd, J=13.0, 7.9 Hz, 1H), 2.67 (dd, J=13.0, 8.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ: 196.9, 174.7, 157.3, 143.6, 139.9, 133.3, 131.8, 130.8, 129.8, 128.5, 128.0, 127.2, 126.8, 123.3, 122.8, 120.8, 110.8, 108.6, 88.1, 82.8, 55.7, 47.8, 42.9, 26.4; HRMS (ESI) calcd for C26H24NO4 [M+H]+ 414.1700, found 414.1701.

    Hydroxylamine hydrochloride (106 mg, 1.5 mmol) and sodium acetate (100 mg, 1.2 mmol) were added to a solution of 4al' (92 mg, 0.20 mmol) in methanol (5 mL). Then, the reaction mixture was refluxed in a heating mantle for 10 h. After cooling to room temperature, water (3 mL) was added to quench the reaction. The solution was extracted with CH2Cl2 (10 mL×3). The combined organic layer was washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The crude reaction mixture was purified via column chromatography on silica gel to afford pure product 5' as colorless solid in 96% yield.

    4-(4-Bromophenyl)-5-((E)-(hydroxyimino)(phenyl)me-thyl)-1'-methyl-4, 5-dihydro-3H-spiro[furan-2, 3'-indolin]-2'-one (5'): White solid (96% yield), m.p. 183~184 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 11.71 (s, 1H), 7.65 (d, J=7.2 Hz, 1H), 7.52 (d, J=8.5 Hz, 2H), 7.41~7.36 (m, 3H), 7.26~7.22 (m, 1H), 7.17~7.11 (m, 5H), 7.07 (d, J=7.8 Hz, 1H), 5.92 (d, J=7.2 Hz, 1H), 4.54~4.49 (m, 1H), 3.17 (s, 3H), 2.82 (dd, J=13.7, 9.6 Hz, 1H), 2.58 (dd, J=13.7, 4.7 Hz, 1H), 2.03~1.96 (m, 1H); 13C NMR (101 MHz, DMSO) δ: 174.8, 156.4, 143.5, 141.7, 134.5, 131.95, 131.5, 130.8, 130.3, 130.1, 129.0, 128.6, 127.6, 124.3, 123.5, 120.2, 109.6, 82.6, 81.4, 46.5, 41.96, 26.7; HRMS (ESI) calcd for C25H22BrN2O3 [M+H]+ 477.0808, found 477.0809.

    Supporting information     1H NMR and 13C NMR spectra of 4' and 5'. The Supporting Information is available free of charge via the internet at http://sioc-journal.cn/.

    (Li, L.; Fan, Y.)


    1. [1]

      (a) Rottmann, M.; McNamara, C.; Yeung, B. K. S.; Lee, M. C. S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D. M.; Dharia, N. V.; Tan, J.; Cohen, S. B.; Spencer, K. R.; Gonzalez-Paez, G. E.; Lakshminarayana, S. B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E. K.; Beck, H. P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T. H.; Fidock, D. A.; Winzeler, E. A.; Diagana, T. T. Science 2010, 329, 1175.
      (b) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104.
      (c) Zheng, Y. J.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673.
      (d) Yu, B.; Yu, D. Q.; Liu, H. M. Eur. J. Med. Chem. 2015, 97, 673.
      (e) Ye, N.; Chen, H.; Wold, E. A.; Shi, P.-Y.; Zhou, J. ACS Infect. Dis. 2016, 2, 382.
      (f) Mei, G. J.; Shi, F. Chem. Commun. 2018, 54, 6607.

    2. [2]

      (a) Peddibhotla, S. Curr. Bioact. Compd. 2009, 5, 20.
      (b) Cui, B.-D.; Zuo, J.; Zhao, J.-Q.; Zhou, M.-Q.; Wu, Z.-J.; Zhang, X.-M.; Yuan, W.-C. J. Org. Chem. 2014, 79, 5305.

    3. [3]

      ( a) Vintonyak, V. V.; Warburg, K.; Kruse, H.; Grimme, S.; Hübel, K.; Rauh, D.; Waldmann, H. Angew. Chem., Int. Ed. 2010, 49, 5902.
      (b) Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. J. Am. Chem. Soc. 2010, 132, 15328.
      (c) Crosignani, S.; Jorand-Lebrun, C.; Page, P.; Campbell, G.; Colovray, V.; Missotten, M.; Humbert, Y.; Cleva, C.; Arrighi, J.-F.; Gaudet, M.; Johnson, Z.; Ferro, P.; Chollet, A. ACS Med. Chem. Lett. 2011, 2, 644.
      (d) Rana, S.; Natarajan, A. Org. Biomol. Chem. 2013, 11, 244.

    4. [4]

      Franz, A. K.; Dreyfuss, P. D.; Schreiber, S. L. J. Am. Chem. Soc. 2007, 129, 1020. doi: 10.1021/ja067552n

    5. [5]

      Ghosh, A.; Carter, R. G. Angew. Chem., Int. Ed. 2019, 58, 681. doi: 10.1002/anie.201807509

    6. [6]

      (a) Alcaide, B.; Almendros, P.; Rodriguez-Acebes, R. J. Org. Chem. 2006, 71, 2346.
      (b) Li, J.; Liu, Y. J.; Li, C. J.; Jia, X. Chem.-Eur. J. 2011, 17, 7409.
      (c) Hanhan, N. V.; Jones, N. R.; Tran, N. T.; Franz, A. K. Angew. Chem., Int. Ed. 2012, 51, 989.
      (d) Yang, L.; Xie, P.; Li, E.; Li, X.; Huang, Y.; Chen, R. Org. Biomol. Chem. 2012, 10, 7628.
      (e) Lian, Z.; Shi, M. Eur. J. Org. Chem. 2012, 2012, 581.
      (f) Mei, L.-Y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2013, 32, 3544.
      (g) Tang, Z.; Liu, Z.; An, Y.; Jiang, R.; Zhang, X.; Li, C.; Jia, X.; Li, J. J. Org. Chem. 2016, 81, 9158.
      (h) Silvi, M.; Chatterjee, I.; Liu, Y.-K.; Melchiorre, P. Angew. Chem., Int. Ed. 2013, 52, 10780.
      (i) Zhao, B.-L.; Du, D.-M. Adv. Synth. Catal. 2016, 358, 3992.
      (j) Zhu, Y.-S.; Wang, W.-B.; Yuan, B.-B.; Li, Y.-N.; Wang, Q.-L.; Bu, Z.-W. Org. Biomol. Chem. 2017, 15, 984.
      (k) Zhang, J.-H.; Wang, R.-B.; Li, D.-F.; Zhao, L.-M. ACS Omega 2017, 2, 7022.

    7. [7]

      (a) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402.
      (b) Jones, K.; Wilkinson, J. Chem. Commun. 1992, 1767.
      (c) Overman, L. E.; Rosen, M. D. Angew. Chem., Int. Ed. 2000, 39, 4596.
      (d) Kyei, A. S.; Tchabanenko, K.; Baldwin, J. E.; Adlington, R. M. Tetrahedron Lett. 2004, 45, 8931.
      (e) Jaegli, S.; Dufour, J.; Wei, H.-L.; Piou, T.; Duan, X.-H.; Vors, J.-P.; Neuville, L.; Zhu, J.-P. Org. Lett. 2010, 12, 4498.
      (f) Yin, B.-L.; Lai, J.-Q.; Zhang, Z.-R.; Jiang, H.-F. Adv. Synth. Catal. 2011, 353, 1961.

    8. [8]

      (a) Hua, Y.-Z.; Lu, L.-J.; Huang, P.-J.; Wei, D.-H.; Tang, M.-S.; Wang, M.-C.; Chang, J.-B. Chem.-Eur. J. 2014, 20, 12394.
      (b) Hua, Y.-Z.; Han, X.-W.; Yang, X.-C.; Song, X.; Wang, M.-C.; Chang, J.-B. J. Org. Chem. 2014, 79, 11690.
      (c) Hua, Y.-Z.; Yang, X.-C.; Liu, M.-M.; Song, X.; Wang, M.-C.; Chang, J.-B. Macromolecules 2015, 48, 1651.
      (e) Wang, X.-W.; Hua, Y.-Z.; Wang, M.-C. J. Org. Chem. 2016, 81, 9227.
      (f) Shao, N.; Luo, Y.-Y.; Lu, H.-J.; Hua, Y.-Z.; Wang, M.-C. Tetrahedron 2018, 74, 2130.
      (g) Hua, Y.-Z.; Han, X.-W.; Huang, L.-H.; Wang, M.-C. Chin. J. Org. Chem. 2018, 38, 237(in Chinese).
      (华远照, 韩兴旺, 黄利华, 王敏灿, 有机化学, 2018, 38, 237.)
      (h) Hua, Y.-Z.; Chen, J.-W.; Yang, H.; Wang, M.-C. J. Org. Chem. 2018, 83, 1160.
      (i) Zhang, Z.-F.; Yang, X.-C.; Lu, H.-J.; Wang, M.-C. Eur. J. Org. Chem. 2018, 785.
      (j) Gao, Y.-Y.; Hua, Y.-Z.; Wang, M.-C. Adv. Synth. Catal. 2018, 360, 80.
      (k) Liu, S.; Gao, W.-C.; Miao, Y.-H.; Wang, M.-C. J. Org. Chem. 2019, 84, 2652.

    9. [9]

      (a) Song, X.; Liu, J.; Liu, M.-M.; Wang, X.; Zhang, Z.-F.; Wang, M.-C.; Chang, J. Tetrahedron 2014, 70, 5468.
      (b) Hua, Y.-Z.; Liu, M.-M.; Huang, P.-J.; Song, X.; Wang, M.-C.; Chang, J.-B. Chem.-Eur. J. 2015, 21, 11994.
      (c) Tao, B.-K.; Yang, H.; Hua, Y.-Z.; Wang, M.-C. Org. Biomol. Chem. 2019, 17, 4301.
      (d) Miao, Y.-H.; Hua, Y.-Z.; Wang, M.-C. Org. Biomol. Chem. 2019, 17, 7172.
      (e) Liu, M.-M.; Yang, X.-C.; Hua, Y.-Z.; Chang, J.-B.; Wang, M.-C. Org. Lett. 2019, 21, 7089.
      (f) Yi, Y.; Hua, Y.-Z.; Lu, H.-J.; Liu, L.-T.; Wang, M.-C. Org. Lett. 2020, 22, 2527.
      (g) Liu, M.-M.; Yang, X.-C.; Hua, Y.-Z.; Chang, J.-B.; Wang, M.-C. Org. Lett. 2019, 21, 2111.
      (h) Yang, X.-C.; Liu, M.-M.; Mathey, F.; Yang, H.; Hua, Y.-Z.; Wang, M.-C. J. Org. Chem. 2019, 84, 7762.

    10. [10]

      Guo, Y.-J.; Guo, X.; Kong, D.-Z.; Lu, H.-J.; Liu, L.-T.; Hua, Y.-Z.; Wang, M.-C. J. Org. Chem., 2020, 85, 4195. The minor diastereomers in this article are obtained in 23%~44% isolated yields with about 1:1dr value in the current study. doi: 10.1021/acs.joc.9b03378

    11. [11]

      CCDC 1987133(5') contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre.

  • Scheme1  Construction of tetrahydrofuran spirooxindoles

    Scheme2  Derivatization of product 4al'

    Figure 1  X-ray structure of compound 5'

    Table 1.  Optimization of the reaction conditionsa

    Entry Catalyst x/mol% Solvent Yield/% of 3 Yield/% of 4/4' (4/4')
    1 ZnCl2 10 CH2Cl2 Trace
    2 FeCl3 10 CH2Cl2 NR
    3 Zn(OTf)2 10 CH2Cl2 NR
    4 Cu(OTf)2 10 CH2Cl2 NR
    5 La(OAc)3 10 CH2Cl2 NR
    6 Co(OAc)2 10 CH2Cl2 NR
    7 Zn(OAc)2 10 CH2Cl2 NR
    8 NaOH 10 CH2Cl2 45
    9 KOH 10 CH2Cl2 49
    10 CH3ONa 10 CH2Cl2 70
    11 ZnEt2 10 CH2Cl2 81
    12 NEt3 10 CH2Cl2 NR
    13 ZnEt2 10 THF 62
    14 ZnEt2 10 Toluene 64
    15 ZnEt2 10 Benzene 74
    16 ZnEt2 10 CHCl3 76
    17 ZnEt2 10 CH3CN 79
    18b ZnEt2 5 CH2Cl2 76
    19c ZnEt2 20 CH2Cl2 88
    20c ZnEt2 30 CH2Cl2 88
    21d, e ZnEt2 20 CH2Cl2 60 (32/28)
    22d, f ZnEt2 20 CH2Cl2 71 (39/32)
    23d, g ZnEt2 20 CH2Cl2 84 (46/38)
    a Unless otherwise noted, all the reactions were conducted with 10 mol% catalyst, 0.20 mmol of 1, and 0.21 mmol of 2 in 2 mL of solvent at 20 ℃ for 24 h. b Reaction time was 40 h. c Reaction time was 6 h. d 6 h later, acid was added at 0 ℃ and the mixture was stirred for another 1 h. e Two drops of H2SO4 was added. f 0.5 mL of HCl was added. g 0.5 mL of CF3COOH (TFA) was added.
    下载: 导出CSV

    Table 2.  Substrate scope of the reactiona

    Entry Ar1 R1 Ar2 R2 Product Yield/% (4/4')
    1 Ph Me Ph H 4aa/4aa' 84 (46/38)
    2 Ph Et Ph H 4ab/4ab' 53 (22/31)
    3 Ph Bn Ph H 4ac/4ac' 51 (25/26)
    4 Ph Me Ph F 4ad/4ad' 86 (56/30)
    5 Ph Me Ph Cl 4ae/4ae' 87 (57/30)
    6 Ph Me Ph Br 4af/4af' 61 (39/22)
    7 Ph Me Ph Me 4ag/4ag' 74 (44/30)
    8 Ph Me Ph MeO 4ah/4ah' 76 (37/39)
    9 Ph Me 4-O2NC6H4 H 4ai/4ai' 51 (24/27)
    10 Ph Me 4-FC6H4 H 4aj/4aj' 77 (39/38)
    11 Ph Me 4-ClC6H4 H 4ak/4ak' 88 (44/44)
    12 Ph Me 4-BrC6H4 H 4al/4al' 94 (61/33)
    13 Ph Me 4-MeC6H4 H 4am/4am' 79 (41/38)
    14 Ph Me 4-MeOC6H4 H 4an/4an' 72 (39/33)
    15 Ph Me 3-BrC6H4 H 4ao/4ao' 72 (49/23)
    16 Ph Me 2-BrC6H4 H 4ap/4ap' 79 (50/29)
    17 Ph Me 1-Naphthyl H 4aq/4aq' 75 (37/38)
    18 Ph Me 2-Naphthyl H 4ar/4ar' 84 (58/26)
    19 Ph Me 2-Furyl H 4as/4as' 85 (43/42)
    20 4-FC6H4 Me Ph H 4ba/4ba' 87 (47/40)
    21 4-ClC6H4 Me Ph H 4ca/4ca' 92 (48/44)
    22 4-BrC6H4 Me Ph H 4da/4da' 94 (59/36)
    23 4-MeC6H4 Me Ph H 4ea/4ea' 98 (46/42)
    24 4-MeOC6H4 Me Ph H 4fa/4fa' 91 (62/29)
    25 3-BrC6H4 Me Ph H 4ga/4ga' 80 (48/42)
    26 3-MeOC6H4 Me Ph H 4ha/4ha' 78 (41/37)
    27 2-MeOC6H4 Me Ph H 4ia/4ia' 71 (42/29)
    a Unless otherwise noted, all the reactions were conducted with 20 mol% catalyst, 0.20 mmol of 1, and 0.21 mmol of 2 in 2 mL of CH2Cl2 at 20 ℃. 6 h later, 0.5 mL of TFA was dropwise added at 0 ℃.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  1044
  • HTML全文浏览量:  155
文章相关
  • 发布日期:  2020-07-01
  • 收稿日期:  2020-03-11
  • 修回日期:  2020-04-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章