芹菜根细胞的超微结构与铅形态特征分析

柳检 罗立强

引用本文: 柳检,  罗立强. 芹菜根细胞的超微结构与铅形态特征分析[J]. 分析化学, 2018, 46(9): 1479-1485. doi: 10.11895/j.issn.0253-3820.181253 shu
Citation:  LIU Jian,  LUO Li-Qiang. Analysis of Ultrastructure of Root Cell and Lead Speciation in Celery[J]. Chinese Journal of Analytical Chemistry, 2018, 46(9): 1479-1485. doi: 10.11895/j.issn.0253-3820.181253 shu

芹菜根细胞的超微结构与铅形态特征分析

  • 基金项目:

    本文系国家重点研发计划项目(No.2016YFC0600603)、国家自然科学基金项目(Nos.20775018,41201527)、国家高新技术研究发展计划(863)项目(No.2007AA06Z124)和中国地质调查项目(No.DD20160340)资助

摘要: 植物细胞是植物响应重金属胁迫的重要生化反应场所,探索细胞层级中铅(Pb)的分布与形态转化是揭示有害元素对蔬菜毒性作用机理的重要途径。本研究以芹菜为例,利用能量色散透射电子显微镜(TEM-EDS)和X射线吸收近边结构谱(XANES)技术,考察了Pb胁迫后芹菜根细胞的超微结构、元素分布和形态转化。研究发现,Pb胁迫显著改变了芹菜根细胞的超微结构,导致胞间间隙加大、细胞壁增厚和质膜变糙;芹菜根、茎和叶对Pb具有显著且不同的形态转化功能,可将无机铅(Pb(NO32)转化为有机铅形态;芹菜根细胞中62.7%的Pb以Pb5(PO43Cl形态沉积在根细胞壁,根和茎中有机铅(Pb(Ac)2·3H2O)约占34.4%-37.3%,叶中总有机铅(Pb(C17H35COO)2和Pb(Ac)2·3H2O)占63.3%。结果表明,芹菜细胞的Pb-磷酸盐来源于植物体的生物合成,而非外界根际环境,芹菜根际环境的Pb能够以Pb-Ac的络合物形式进入根细胞,一部分转化成Pb5(PO43Cl沉积于细胞壁,实现Pb的解毒和耐受,少部分经茎长程运输至叶片以Pb-大分子有机酸/磷酸盐的形式贮存。

English

    1. [1]

      Andresen E, Kappel S, Stärk H J, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer C E, Matoušková S, Dickinson B. New Phytol.,2016,210(4):1244-1258

    2. [2]

      Clemens S, Ma J F. Annu. Rev. Plant Biol.,2016,67(1):489-512

    3. [3]

      Liu H, Zhao H, Wu L, Liu A, Zhao F J, Xu W. New Phytol.,2017,215(2):687-698

    4. [4]

      Pérezchaca M V, Rodríguezserrano M, Molina A S, Pedranzani H E, Zirulnik F, Sandalio L M, Romeropuertas M C. Plant Cell Environ.,2014,37(7):1672-1687

    5. [5]

      Demidchik V. Environ. Exp. Bot.,2015,109:212-228

    6. [6]

      Emamverdian A, Ding Y L, Mokhberdoran F, Xie Y. Sci. World J.,2015,2015(4):1-18

    7. [7]

      Colzi I, Lastrucci L, Rangoni M, Coppi A, Gonnelli C. J. Environ. Manage.,2018,213:320-328

    8. [8]

      Gill R A, Zang L L, Ali B, Farooq M A, Cui P, Yang S, Ali S, Zhou W J. Chemosphere,2015,120:154-164

    9. [9]

      Gupta D K, Pena L B, Romero-Puertas M C, Hernandez A, Inouhe M, Sandalio L M. Plant Cell Environ.,2017, 40(4):509-526

    10. [10]

      Adams M S, Dillon C T, Vogt S, Lai B, Stauber J, Jolley D F. Environ. Sci. Technol.,2016,50(16):8827-8839

    11. [11]

      ZHANG Li-Ping, SHEN Ya-Ting. Chinese J. Anal. Chem.,2017,45(8):1129-1136 张丽萍, 沈亚婷.分析化学,2017,45(8):1129-1136

    12. [12]

      Kopittke P M, Asher C J, Blamey F P C, Auchterlonie G J, Guo Y N, Menzies N W. Environ. Sci. Technol.,2008,42(12):4595-4599

    13. [13]

      Zheng L, Peer T, Seybold V, Lütz-Meindl U. Environ. Exp. Bot.,2012,77:196-206

    14. [14]

      Fahr M, Laplaze L, Bendaou N, Hocher V, Mzibri M E, Bogusz D, Smouni A. Front. Plant Sci.,2013,4:175

    15. [15]

      Ye X X, Wang G Z, Zhang Y X, Zhao H J. Environ. Sci. Nano,2018,5(2):398-407

    16. [16]

      Castro-Longoria E, Trejo-Guillén K, Vilchis-Nestor A R, Avalos-Borja M, Andrade-Canto S B, Leal-Alvarado D A, Santamaría J M. Colloids Surf. B, 2014,114(1):277-283

    17. [17]

      Wang Y, Shen H, Xu L, Zhu X W, Li C, Zhang W, Xie Y, Gong Y Q, Liu L W. Front. Plant Sci.,2015,6:293

    18. [18]

      Huang L, Zhang H Q, Song Y Y, Yang Y R, Chen H, Tang M. Front. Plant Sci.,2017,8:517

    19. [19]

      SONG Yu-Fang, SHEN Ya-Ting. Chinese J. Anal. Chem., 2017,45(9):1309-1315 宋玉芳, 沈亚婷.分析化学,2017,45(9):1309-1315

    20. [20]

      Cotter-Howells J, Champness P E, Charnock J M. Mineral. Mag.,1999,63(6):777-789

    21. [21]

      Duan D C, Peng C, Xu C, Yu M G, Sun L J, Worden N, Shi J Y, Hu T D. Plant Soil,2014,382(1-2):103-115

    22. [22]

      Shen Y T, Song Y F. J. Synchrotron Radiat.,2017,24(2):463-468

    23. [23]

      Beauchemin S, Maclean L C, Rasmussen P E. Environ. Geochem. Health,2011,33(4):343-352

    24. [24]

      Schreck E, Dappe V, Sarret G, Sobanska S, Nowak D, Nowak J, Stefaniak E A, Magnin V, Ranieri V, Dumat C. Sci. Total Environ.,2014,476:667-676

    25. [25]

      Hoagland D R, Arnon D I. Calif. Agric. Exp. Stn. Circ.,1939,347:36-39

    26. [26]

      Niazi N K, Singh B, Shah P. Environ. Sci. Technol.,2011,45(17):7135-7142

    27. [27]

      Krzeslowska M, Rabeda I, Basinska A, Lewandowski M, Mellerowicz E J, Napieralska A, Samardakiewicz S, Wozny A. Environ. Pollut.,2016,214:354-361

    28. [28]

      Sharma R K, Agrawal M. J. Environ. Biol.,2005,26(2):301-313

    29. [29]

      Onireti O O, Lin C X, Qin J H. Chemosphere,2017,170:161-168

    30. [30]

      Luo Q, Wang S Y, Sun L N, Wang H. Sci. Rep.,2017,7:39878-39886

    31. [31]

      Luo L Q, Shen Y T, Liu J, Zeng Y. Spectrochim. Acta B,2016,122:40-45

    32. [32]

      Hafsteinsdottir E G, Camenzuli D, Rocavert A L, Walworth J, Gore D B. Appl. Geochem.,2015,59:47-62

    33. [33]

      Evangelou M W H, Ebel M, Schaeffer A. Chemosphere,2006,63(6):996-1004

    34. [34]

      Sharma N C, Gardea-Torresdey J L, Parsons J, Sahi S V. Environ. Toxicol. Chem.,2004,23(9):2068-2073

    35. [35]

      Wang H H, Shan X Q, Liu T, Xie Y N, Wen B, Zhang S Z, Han F, Van Genuchten M T. Planta,2007,225(6):1483-1494

    36. [36]

      Shen Y T. X-Ray Spectrom.,2014, 43(3):146-151

    37. [37]

      Alberola N, Bornet H, Peyrin J O, Amiel M. Environ. Pollut.,2015,205(6):315-326

    38. [38]

      SUN Jian-Ling, LUO Li-Qiang. Chin. J. Anal. Chem.,2014,42(10):1447-1452 孙建伶, 罗立强.分析化学,2014,42(10):1447-1452

    39. [39]

      Zeng G M, Wan J, Huang D L, Hu L, Huang C, Cheng M, Xue W J, Gong X M, Wang R M, Jiang D N. J. Hazard. Mater.,2017,339:354-367

    40. [40]

      LIU Jian, LUO Li-Qiang. Rock and Mineral Analysis,2015,4(3):269-277 柳检, 罗立强.岩矿测试,2015,4(3):269-277

    41. [41]

      Zhao F J, McGrath S P, Meharg A A. Annu. Rev. Plant Biol.,2010,61(1):535-559

    42. [42]

      Keasling J D. Ann. N. Y. Acad. Sci.,1997,829(1):242-249

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  545
  • HTML全文浏览量:  37
文章相关
  • 收稿日期:  2018-04-16
  • 修回日期:  2018-06-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章