Synthesis, Crystal Structure and Fungicidal Activity of 2-Chloro-N-(o-tolylcarbamoyl)nicotinamide

Li-Jing MI Qiao WANG Cheng-Xia TAN Jian-Quan WENG Xing-Hai LIU

Citation:  Li-Jing MI, Qiao WANG, Cheng-Xia TAN, Jian-Quan WENG, Xing-Hai LIU. Synthesis, Crystal Structure and Fungicidal Activity of 2-Chloro-N-(o-tolylcarbamoyl)nicotinamide[J]. Chinese Journal of Structural Chemistry, 2020, 39(3): 452-458. doi: 10.14102/j.cnki.0254-5861.2011-2459 shu

Synthesis, Crystal Structure and Fungicidal Activity of 2-Chloro-N-(o-tolylcarbamoyl)nicotinamide

English

  • Heterocyclic compounds received important attention due to their various biological activities[1-5]. Pyridine derivatives displayed diverse activities, such as nematicidal activity[6-8], fungicidal activity[9-16], antimicrobial activity[17], herbicidal activity[18, 19], antitumor activity[20], anti-HIV activity[21] and p38 MAP kinase inhibitors[22]. Lots of pyridine compounds were developed as commericial drugs or pesticides. In addition, acyl urea group is also an important key building block in many drugs or pesticides. They always exhibited diversity bioactivities, such as insecticidal activity[23], anti-tumor activity[24], fungicidal activity[25-28], insecticidal activity[29], anti-inflammatory activity[30], antioxidant activity[31].

    In view of these facts mentioned above, and also as a part of our work on the synthesis of bioactive lead compounds for drug discovery[32-49], the title compound 2-chloro-N-(o-tolylcarbamoyl)nicotinamide was designed and synthesized. The structure was characterized by 1H NMR and H RMS. The single crystal structure was determined by X-ray diffraction, and the fungicidal activity of the title compound was tested.

    Melting points were determined using an X-4 apparatus and uncorrected. 1H NMR spectra were measured on a Bruker AC-P500 instrument using TMS as an internal standard and CDCl3 as the solvent. HR-ESI-MS was tested using an Agilent 1100 HPLC-JEOL AccuTOF instrument. All the reagents were of analytical grade or freshly prepared before use.

    The intermediates 1, 2 and 3 were synthesized according to our previous work[50-52]. To a solution of intermediate 3 (2 mmol) in CH2Cl2 (8 mL) was added 2 mmol o-toluidine with stirring for overnight. After the reaction is over, the solvent was evaporated, and the mixture was purified by chromatography on a silica gel to give 2-chloro-N-(o-tolylcarbamoyl)nicotinamide (4): white solid, yield 65.7%, m.p. 168~171 ℃, 1H NMR (CDCl3, 500 MHz), δ: 2.40 (s, 3H, CH3), 7.09~7.12 (m, 1H, Ph), 7.23 (t, J = 6.2 Hz, 2H, Ph), 7.42~7.44 m, 1H, Py), 7.91 t, J = 6.4 Hz, 1H, Ph), 8.13~8.15 m, 1H, Py), 8.60~8.61 m, 1H, Py), 9.45 s, 1H, NH), 10.41 s, 1H, NH); H RMS (ESI) for C14H12ClN3O2 m/z: calculated, 290.0691. Found: 290.0648 [M+H]+.

    A colorless crystal suitable for X-ray diffraction study was cultivated in the test tube from EtOH by self-volatilization. A crystal with dimensions of 0.36mm × 0.32mm × 0.20mm was mounted on a Rigaku Saturn diffractometer equipped with a graphite-monochromatic Mo radiation (λ = 0.71073 Å). Intensity data were collected at 296(2) K by using a multi-scan mode in the range of 5.912≤θ≤58.778° with the following index ranges: –7≤h≤10, –16≤k≤16 and –13≤l≤13. A total of 11712 reflections were collected and 3334 were independent (Rint = 0.0286), of which 2467 with I > 2σ(I) were observed. The crystal structure was solved by direct methods with SHELXS-97 and refined by full-matrix least-squares refinements based on F2 with SHELXL-97[53]. All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were located in the calculated positions and refined with a riding model. The final refinement converged at R = 0.0416 and wR = 0.0971.

    The synthetic route of 2-chloro-N-(o-tolylcarbamoyl)nicotinamide is depicted in Scheme 1. In this paper, 2-chloronicotinic acid was used as the starting material. 2-Chloronicotinic acid reacted with SOCl2 to afford 2-chloronicotinoyl chloride which was used for the next step without purification. Then, the 2-chloronicotinoyl chloride was dropwise added into the ammonia solution, obtaining white solid. The amide intermediate 2 reacted with oxalyl chloride under reflux condition, then the colorless liquid 2-chloronicotinoyl isocyanate was given. Finally, the target compound was afforded after o-toluidine was added into the isocyanate solution. The structure of the pure title product was confirmed by 1H NMR and HRMS. From the 1H NMR data, the appearance of signal at 2.40 ppm belongs to the methyl protons of phenyl ring. The protons of pyridne and phenyl rings are found at 7~8 ppm. The signals of 9.45 and 10.41 ppm are the NH protons of urea bridge. The high resolution mass spectroscopy of the title compound is in agreement with the molecular formula C14H12ClN3O2.

    Scheme 1

    Scheme 1.  Synthetic route of the title compound

    The crystal belongs to monoclinic system with space group P21/n. The molecular structure of the title compound is shown in Fig. 1 and the packing of the title compound is shown in Fig. 2. The selected bond lengths and bond angles for the title compound are given in Table 1.

    Figure 1

    Figure 1.  Molecular structure of the title compound

    Figure 2

    Figure 2.  Packing of the title compound

    Table 1

    Table 1.  Selected Bond Lengths (Å) and Bond Angles (°) for the Title Compound
    DownLoad: CSV
    Bond Dist. Angle (°)
    O(1)–C(7) 1.2191(18) C(7)–N(1)–C(1) 127.87(13)
    O(2)–C(8) 1.2188(18) C(8)–N(2)–C(7) 128.61(13)
    N(1)–C(1) 1.415(2) C(6)–C(1)–N(1) 122.82(14)
    O(2)–C(7) 1.2333(15) C(6)–C(1)–C(2) 120.67(15)
    N(2)–C(7) 1.401(2) O(1)–C(7)–N(2) 118.41(14)
    N(2)–C(8) 1.3707(19) N(1)–C(7)–N(2) 115.87(13)
    N(3)–C(10) 1.311(2) O(2)–C(8)–N(2) 122.72(15)
    N(3)–C(11) 1.337(2) O(2)–C(8)–C(9) 122.60(14)
    C(1)–C(2) 1.398(2) N(2)–C(8)–C(9) 114.62(13)
    C(1)–C(6) 1.387(2) C(10)–C(9)–C(8) 123.15(14)
    C(2)–C(3) 1.386(2) C(13)–C(9)–C(8) 120.66(14)

    Generally, the average bond lengths and bond angles of ring system (phenyl and pyridine ring) are in the normal ranges[54]. The N(3)–C(10) (1.311(2) Å) and N(3)–C(11) (1.337(2) Å) bonds were longer than the general C=N double bond in 1.27 Å, which indicated significant electron delocalization in the fused ring system. However, the C(7)–N(2) (1.401(2) Å) and C(7)–N(2) (1.401(2) Å) bonds are longer than the general C=N double bond of 1.28 Å[55]. In the other planar pyridine and phenyl rings, the C–C bond lengths range from 1.373(3) to 1.492(2) Å, almost equal to the values of typical bonds of aromatic structure[56] with the average bond angle of 120°. The torsion angles of C(1)– N(1)–C(7)–N(2), N(1)–C(7)–N(2)–C(8) and C(7)– N(2)–C(8)–C(9) are –173.90(15)°, 0.4(3)° and 171.30(16)°, respectively, which indicated the two carbonyl groups are opposite and the acyl urea bridge is in the same plane.

    In the intermolecular face-to-face π-π stacking pattern of the title compound, it is worth to mention that the two molecules of each stacking unit are cetrosymmetric, which can be proved by the relative position of the phenyl rings (C(1) to C(6)) and pyridine ring: the centroid separation of them is 3.801 Å. As shown in Fig. 1, between the phenyl ring (C(1)~C(6)) and pyridine ring (C(9), C(10), N(3), C(11), C(12), C(13)), there is a small dihedral angle (θ) of 52.4º with plane equation 7.005x + 5.729y – 0.657z = 1.7214 and 7.050x – 5.578y – 0.717z = –1.3901 respectively, and the largest deviation from the least-squares plane is 0.0065 and 0.0040 nm. The title compound has an extensive network of hydrogen bonding. The parameters of intramolecular and intermolecular bonds are given in Table 2. They are linked together by O–H···N and C–H···O hydrogen bonds. From Fig. 1, the N(1)–H(1)···O(1) and C(6)–H(6)···O(1) hydrogen bonds formed a six-membered ring in the molecule. In the bc plane, they are linked together by N(2)–H(2)···O(1) hydrogen bonds (Fig. 2). This hydrogen-bonding sequence is repeated to form a ring. The ring is shaped like a decagon and has two N(2) and two O(1) atoms at the vertices, leading to a hydrogen-bond network defining cyclic motifs denoted $ R_2^2 $(8). The hydrogen bonds and weak π-π interactions strengthen the integration of the 3D network. These interactions are estimated to play a role in stabilizing the crystal structure.

    Table 2

    Table 2.  Hydrogen-bond Parameters (Å) of the Title Compound 4
    DownLoad: CSV
    D–H···A d(D–H) d(H···A) d(D···A) ∠(DHA)
    N(2)–H(2)···O(1)# 0.86 2.66 2.865(6) 170
    N(1)–H(1)···O(2) 0.86 1.96 2.656(6) 138
    C(6)–H(6)···O(1) 0.93 2.29 2.873(2) 120.
    Symmetry transformations used to generate the equivalent atoms: #: –x, 1 – y, 1 – z

    Fungicidal activities of compound 2-chloro-N(o-tolylcarbamoyl)nicotinamide against Gibberella zeae (GZ), Phytophthora infestans (PI), Phytophthora capsici (PC), Sclerotinia sclerotiorum (SS), Rhizoctonia solani (RS), Alternaria solani (AS), Botrytis cinerea (BC), Fusarium oxysporum (FO), Cercospora arachidicola (CA) and Physalospora piricola (PP) were evaluated at 50 μg/mL according to our previous work[50] with fluxapyroxad used as controls, and the results are listed in Table 3. The primary bioassay shows the title compound exhibits good inhibiting activity against Fusarium oxysporum (40.0%), Cercospora arachidicola (40.0%) and Gibberella zeae (57.1%), which is better than that of control fluxapyroxad (29.4% and 28.6%). The title compound exhibits moderate inhibiting activity against Cercospora arachidicola (40.0%) and Botrytis cinerea (45.5%), which is a little weaker than that of control fluxapyroxad (100% and 63.6%). For the other six fungals Phytophthora infestans, Phytophthora capsici, Sclerotinia sclerotiorum, Rhizoctonia solani, Alternaria solani and Physalospora piricola, they exhibited weak activity (< 40%) with inhibitory activity at 50 μg/mL, respectively.

    Table 3

    Table 3.  Fungicidal Activity of the Title Compound 4
    DownLoad: CSV
    No. FO CA BB AI GZ SS BC RS PI PC
    4 40.0 40.0 22.2 33.3 57.1 11.1 45.5 18.5 5.9 10.0
    Control 29.4 100 63.6 88.9 28.6 96.4 63.6 88.4 27.3 16.7

    1. [1]

      Cheng, L.; Zhao, W.; Shen, Z. H.; Xu, T. M.; Wu, H. K.; Peng, W. L.; Liu, X. H. Synthesis, nematocidal activity and docking study of novel pyrazole-4-carboxamide derivatives against meloidogyne incognita. Lett. Drug Des. Discov. 2019, 16, 29–35.

    2. [2]

      Liu, X. H.; Pan, L.; Ma, Y.; Weng, J. Q.; Tan, C. X.; Li, Y. H.; Shi, Y. X.; Li, B. J.; Li, Z. M.; Zhang, Y. G. Design, synthesis, biological activities, and 3D-QSAR of new N, N΄-diacylhydrazines containing 2-(2, 4-dichlorophenoxy)propane moiety. Chem. Biol. Drug Des. 2011, 78, 689−694. doi: 10.1111/j.1747-0285.2011.01205.x

    3. [3]

      Yan, S. L.; Yang, M. Y.; Sun, Z. H.; Min, L. J.; Tan, C. X.; Weng, J. Q.; Wu, H. K.; Liu, X. H. Synthesis and antifungal activity of 1, 2, 3-thiadiazole derivatives containing 1, 3, 4-thiadiazole moiety. Lett. Drug Des. Discov. 2014, 11, 940−943. doi: 10.2174/1570180811666140423222141

    4. [4]

      Cheng, L.; Zhang, R. R.; Wu, H. K.; Xu, T. M.; Liu, X. H. The synthesis of 6-(tertbutyl)-8-fluoro-2, 3-dimethylquinoline carbonate derivatives and their antifungal activity against pyricularia oryzae. Front. Chem. Sci. Eng. 2019, 13, 369–376. doi: 10.1007/s11705-018-1734-7

    5. [5]

      Liu, X. H.; Tan, C. X.; Weng, J. Q. Phase transfer-catalyzed, one-pot synthesis of some novel N-pyrimidinyl-N΄-nicotinyl thiourea derivatives, Phosphorus Sulfur Silicon. Relat. Elem. 2011, 186, 552−557. doi: 10.1080/10426507.2010.508059

    6. [6]

      Liu, X. H.; Zhao, W.; Shen, Z. H.; Xing, J. H.; Yuan, J.; Yang, G.; Xu, T. M.; Peng, W. L. Synthesis, nematocidal activity and docking study of novel chiral 1-(3-chloropyridin-2-yl)-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives. Bioorg. Med. Chem. Lett. 2016, 26, 3626–3628. doi: 10.1016/j.bmcl.2016.06.004

    7. [7]

      Zhao, W.; Shen, Z. H.; Xu, T. M.; Peng, W. L.; Liu, X. H. Synthesis, nematocidal activity and docking study of novel chiral 1-(3-chloropyridin-2-yl)-3-(difluoromethyl)-1H-pyrazole-4-carboxamide derivatives. J. Heterocycl. Chem. 2017, 54, 1751–1756. doi: 10.1002/jhet.2753

    8. [8]

      Zhao, W.; Shen, Z. H.; Xing, J. H.; Yang, G.; Xu, T. M.; Peng, W. L.; Liu, X. H. Synthesis and nematocidal activity of novel 1-(3-chloropyridin-2-yl)-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives. Chem. Pap. 2017, 71, 921–928. doi: 10.1007/s11696-016-0012-8

    9. [9]

      Liu, X. H.; Sun, Z. H.; Yang, M. Y.; Tan, C. X.; Weng, J. Q.; Zhang, Y. G.; Ma, Y. Microwave assistant one pot synthesis, crystal structure, antifungal activities and 3D-QSAR of novel 1, 2, 4-triazolo[4, 3-a]pyridines. Chem. Biol. Drug Des. 2014, 84, 342–347. doi: 10.1111/cbdd.12323

    10. [10]

      Sun, G. X.; Yang, M. Y.; Shi, Y. X.; Sun, Z. H.; Liu, X. H.; Wu, H. K.; Li, B. J.; Zhang, Y. G. Microwave assistant synthesis, antifungal activity and DFT theoretical study of some novel 1, 2, 4-triazole derivatives containing pyridine moiety. Int. J. Mol. Sci. 2014, 15, 8075–8090. doi: 10.3390/ijms15058075

    11. [11]

      Zhang, L. J.; Yang, M. Y.; Sun, Z. H.; Tan, C. X.; Weng, J. Q.; Wu, H. K.; Liu, X. H. Synthesis and antifungal activity of 1, 3, 4-thiadiazole derivatives containing pyridine group. Lett. Drug Des. Discov. 2014, 11, 1107–1111. doi: 10.2174/1570180811666140610212731

    12. [12]

      Sun, G. X.; Shi, Y. X.; Sun, Z. H.; Yang, M. Y.; Wu, H. K.; Weng, J. Q.; Tan, C. X.; Liu, X. H.; Li, B. J.; Zhang, Y. G. Synthesis and bioactivities of novel 1, 3, 4-oxadiazole derivatives containing pyridine moiety. Lett. Drug Des. Discov. 2014, 11, 1119–1123. doi: 10.2174/1570180811666140522002929

    13. [13]

      Yang, M. Y.; Zhao, W.; Liu, X. H.; Tan, C. X.; Weng, J. Q. Synthesis, crystal structure and antifungal activity of 4-(5-((2, 4-dichlorobenzyl)thio)-4-phenyl-4H-1, 2, 4-triazol-3-yl)pyridine. Chin. J. Struct. Chem. 2015, 34, 203–207.

    14. [14]

      Zhai, Z. W.; Shi, Y. X.; Yang, M. Y.; Zhao, W.; Sun, Z. H.; Weng, J. Q.; Tan, C. X.; Liu, X. H.; Li, B. J.; Zhang, Y. G. Microwave assisted synthesis and antifungal activity of some novel thioethers containing 1, 2, 4-triazolo[4, 3-a]pyridine moiety. Lett. Drug Des. Discov. 2016, 13, 521–525. doi: 10.2174/157018081306160618181757

    15. [15]

      Wang, Q.; Zhai, Z. W.; Sun, Z. H.; Liu, X. H.; Tan, C. X.; Weng, J. Q. Synthesis, crystal structure and antifungal activity of 8-chloro-3-((4-chlorobenzyl)thio)[1, 2, 4]triazolo [4, 3-a]pyridine. Chin. J. Struct. Chem. 2016, 35, 651–655.

    16. [16]

      Yang, M. Y.; Zhai, Z. W.; Sun, Z. H.; Yu, S. J.; Liu, X. H.; Weng, J. Q.; Tan, C. X.; Zhao, W. G. A facile one-pot synthesis of novel 1, 2, 4-triazolo[4, 3-a]pyridine derivatives containing the trifluoromethyl moiety using microwave irradiation. J. Chem. Res. 2015, 9, 521–523.

    17. [17]

      Dharman, P.; Babu, V.; Basha, K. A. A facile synthesis of novel 5-substituted pyridine 2 carboxamide derivatives and their biological evaluation and 3D QSAR studies. J. Chin. Chem. Soc. 2019, 66, 415–426. doi: 10.1002/jccs.201800035

    18. [18]

      Liu, X. H.; Zhai, Z. W.; Xu, X. Y.; Yang, M. Y.; Sun, Z. H.; Weng, J. Q.; Tan, C. X.; Chen, J. Facile and efficient synthesis and herbicidal activity determination of novel 1, 2, 4-triazolo[4, 3-a]pyridin-3(2H)-one derivatives via microwave irradiation. Bioorg. Med. Chem. Lett. 2015, 25, 5524–5528. doi: 10.1016/j.bmcl.2015.10.064

    19. [19]

      Shen, Z. H.; Shi, Y. X.; Yang, M. Y.; Sun, Z. H.; Weng, J. Q.; Tan, C. X.; Liu, X. H.; Li, B. J.; Zhao, W. G. Synthesis, crystal structure, DFT studies and biological activity of a novel schiff base containing triazolo [4, 3-a]pyridine moiety. Chin. J. Struct. Chem. 2016, 35, 457–464.

    20. [20]

      Radwan, A. S.; Khalid, M. A. A. Synthesis, docking, and anticancer activity of new thiazole clubbed thiophene, pyridine, or chromene scaffolds. J. Heterocycl. Chem. 2019, 56, 1063–1074. doi: 10.1002/jhet.3493

    21. [21]

      Huang, B. S.; Li, X.; Zhan, P.; De Clercq, E.; Daelemans, D.; Pannecouque, C.; Liu, X. Y. Design, synthesis, and biological evaluation of novel 2-(pyridin-3-yloxy)acetamide derivatives as potential anti-HIV-1 agents. Chem. Biol. Drug Des. 2016, 87, 283–289. doi: 10.1111/cbdd.12657

    22. [22]

      Ali, M. A.; Osman, H.; Kumar, R. S.; Almansour, A. I.; Arumugam, N.; Masand, V. H.; Panneerselvam, T. Synthesis and evaluation of compounds containing 4-arylpiperazinyl moieties linked to a 2-(pyridin-3-yl)-1H-benzimidazole as p38 MAP kinase inhibitors. Lett. Drug Des. Discov. 2016, 13, 691–696. doi: 10.2174/1570180812666151022221401

    23. [23]

      Liu, X. H.; Wang, Q.; Sun, Z. H.; Wedge, D. E.; Becnel, J. J.; Estep, A. S.; Tan, C. X.; Weng, J. Q. Synthesis and insecticidal activity of novel pyrimidine derivatives containing urea pharmacophore against Aedes aegypti. Pest Manag. Sci. 2017, 73, 953–959. doi: 10.1002/ps.4370

    24. [24]

      Gouhar, R. S.; Haneen, D. S. A.; El-Hallouty, S. M. Synthesis and anticancer evaluation of some novel quinazolin-4(3H)-one derivatives. J. Heterocycl. Chem. 2019, 56, 1651–1660. doi: 10.1002/jhet.3559

    25. [25]

      Jin, T.; Zhai, Z. W.; Han, L.; Weng, J. Q.; Tan, C. X.; Liu, X. H. Synthesis, crystal structure, docking and antifungal activity of a new pyrazole acylurea compound. Chin. J. Struct. Chem. 2018, 37, 1259–1264.

    26. [26]

      Zhai, Z. W.; Yang, M. Y.; Sun, Z. H.; Liu, X. H.; Weng, J. Q.; Tan, C. X. Facile and efficient synthesis of novel 1, 2, 3-thiadiazole derivatives using microwave irradiation. J. Chem. Res. 2015, 9, 340–342.

    27. [27]

      Wang, H.; Zhai, Z. W.; Shi, Y. X.; Tan, C. X.; Weng, J. Q.; Han, L.; Li, B. J.; Liu, X. H. Novel trifluoromethylpyrazole acyl thiourea derivatives: synthesis, antifungal activity and docking study. Lett. Drug Des. Discov. 2019, 16, 785–791. doi: 10.2174/1570180815666180704103047

    28. [28]

      Sun, N. B.; Shen, Z. H.; Zhai, Z. W.; Han, L.; Weng, J. Q.; Tan, C. X.; Liu, X. H. Design, synthesis, fungicidal activity and docking study of acyl thiourea derivatives containing pyrazole moiety. Chin. J. Org. Chem. 2017, 37, 2705–2710.

    29. [29]

      Liu, X. H.; Wang, Q.; Sun, Z. H.; Wedge, D. E.; Becnel, J. J.; Estep, A. S.; Tan, C. X.; Weng, J. Q. Synthesis and insecticidal activity of novel pyrimidine derivatives containing urea pharmacophore against Aedes aegypti. Pest Manag. Sci. 2017, 73, 953–959. doi: 10.1002/ps.4370

    30. [30]

      Somakala, K.; Amir, M. Synthesis, characterization and pharmacological evaluation of pyrazolyl urea derivatives as potential anti-inflammatory agents. Acta Pharm. Sin. B 2017, 7, 230–240. doi: 10.1016/j.apsb.2016.08.006

    31. [31]

      Sudhamani, H.; Basha, S. K. T.; Adam, S.; Madhusudhana, S.; Rani, A. U.; Raju, C. N. Synthesis and evaluation of urea and thiourea derivatives of lopinavir intermediate as potent antimicrobial, antioxidant agents and molecular docking studies against Staphopain. Res. Chem. Intermed. 2017, 43, 103–120. doi: 10.1007/s11164-016-2609-5

    32. [32]

      Liu, X. H.; Weng, J. Q.; Wang, B. L.; Li, Y. H.; Tan, C. X.; Li, Z. M. Microwave-assisted synthesis of novel fluorinated 1, 2, 4-triazole derivatives, and study of their biological activity. Res. Chem. Intermed. 2014, 40, 2605–2612. doi: 10.1007/s11164-013-1113-4

    33. [33]

      Liu, X. H.; Pan, L.; Weng, J. Q.; Tan, C. X.; Li, Y. H.; Wang, B. L.; Li, Z. M. Synthesis, structure, and biological activity of novel (oxdi/tri)azoles derivatives containing 1, 2, 3-thiadiazole or methyl moiety. Mol. Divers. 2012, 16, 251–260. doi: 10.1007/s11030-011-9352-z

    34. [34]

      Tan, C. X.; Shi, Y. X.; Weng, J. Q.; Liu, X. H.; Li, B. J.; Zhao, W. G. Synthesis and antifungal activity of 1, 2, 4-triazole derivatives containing cyclopropane moiety. Lett. Drug Des. Discov. 2012, 9, 431–435. doi: 10.2174/157018012799859954

    35. [35]

      Sun, G. X.; Yang, M. Y.; Shi, Y. X.; Sun, Z. H.; Liu, X. H.; Wu, H. K.; Li, B. J.; Zhang, Y. G. Microwave assistant synthesis, antifungal activity and DFT theoretical study of some novel 1, 2, 4-triazole derivatives containing pyridine moiety. Int. J. Mol. Sci. 2014, 15, 8075–8090. doi: 10.3390/ijms15058075

    36. [36]

      Sun, N. B.; Fu, J. Q.; Weng, J. Q.; Jin, J. Z.; Tan, C. X.; Liu, X. H. Microwave assisted synthesis, antifungal activity and DFT theoretical study of some novel 1, 2, 4-triazole derivatives containing the 1, 2, 3-thiadiazole moiety. Molecules 2013, 18, 12725–12739. doi: 10.3390/molecules181012725

    37. [37]

      Liu, X. H.; Fang, Y. M.; Xie, F.; Zhang, R. R.; Shen, Z. H.; Tan, C. X.; Weng, J. Q.; Xu, T. M.; Huang, H. Y. Synthesis and in vivo fungicidal activity of some new quinoline derivatives against rice blast. Pest Manag. Sci. 2017, 73, 1900–1907. doi: 10.1002/ps.4556

    38. [38]

      Fang, Y. M.; Zhang, R. R.; Shen, Z. H.; Tan, C. X.; Weng, J. Q.; Xu, T. M.; Liu, X. H.; Huang, H. Y.; Wu, H. K. Synthesis and antifungal activity of some 6-tert-butyl-8-chloro-2, 3-dimethylquinolin-4-ol derivatives against pyricularia oryae. Lett. Drug Des. Discov. 2018, 15, 1314–1318. doi: 10.2174/1570180815666180313121735

    39. [39]

      Fang, Y. M.; Zhang, R. R.; Shen, Z. H.; Wu, H. K.; Tan, C. X.; Weng, J. Q.; Xu, T. M.; Liu, X. H. Synthesis, antifungal activity, and SAR study of some new 6-perfluoropropanyl quinoline derivatives. J. Heterocycl. Chem. 2018, 55, 240–245. doi: 10.1002/jhet.3031

    40. [40]

      Fu, Q.; Cai, P. P.; Cheng, L.; Zhong, L. K.; Tan, C. X.; Shen, Z. H.; Han, L.; Liu, X. H. Synthesis and herbicidal activity of novel pyrazole aromatic ketone analogs as HPPD inhibitor. Pest Manag. Sci. 2019, doi: 10.1002/ps.5591.

    41. [41]

      Cheng, L.; Cai, P. P.; Zhang, R. R.; Han, L.; Tan, C. X.; Weng, J. Q.; Xu, T. M.; Liu, X. H. Synthesis and biological activity of some new 6-perfluoropropanyl quinoline derivatives. J. Heterocycl. Chem. 2018, 55, 2585–2589. doi: 10.1002/jhet.3316

    42. [42]

      Cheng, L.; Shen, Z. H.; Xu, T. M.; Tan, C. X.; Weng, J. Q.; Han, L.; Peng, W. L.; Liu. X. H. Synthesis and nematocidal activity of N-substituted 3-methyl-1H-pyrazole-4-carboxamide derivatives against meloidogyne incognita. J. Heterocycl. Chem. 2018, 55, 946–950. doi: 10.1002/jhet.3123

    43. [43]

      Zhao, W.; Xing, J. H.; Xu, T. M.; Peng, W. L.; Liu, X. H. Synthesis and in vivo nematocidal evaluation of novel 3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives. Front. Chem. Sci. Eng. 2017, 11, 363–368. doi: 10.1007/s11705-016-1595-x

    44. [44]

      Wang, Q.; Shen, Z. H.; Sun, Z. H.; Weng, J. Q.; Tan, C. X.; Liu, X. H.; Zhang, Y. G. Synthesis of two 1, 3, 4-thiadiazole compounds: crystal structure, theoretical and antifungal activity study. J. Chem. Soc. Pak. 2017, 39, 524–531.

    45. [45]

      Zhao, W.; Shen, Z. H.; Xing, J. H.; Xu, T. M.; Peng, W. L.; Liu, X. H. Synthesis, characterization, nematocidal activity and docking study of novel pyrazole-4-carboxamide derivatives. Chin. J. Struct. Chem. 2017, 36, 423–428.

    46. [46]

      Liu, X. H.; Zhao, W.; Shen, Z. H.; Xing, J. H.; Xu, T. M.; Peng, W. L. Synthesis, nematocidal activity and SAR study of novel difluoromethylpyrazole carboxamide derivatives containing flexible alkyl chain moieties. Eur. J. Med. Chem. 2017, 125, 881–889. doi: 10.1016/j.ejmech.2016.10.017

    47. [47]

      Zhao, W.; Shen, Z. H.; Xing, J. H.; Xu, T. M.; Peng, W. L.; Liu, X. H. Synthesis and nematocidal activity of novel pyrazole carboxamide derivatives against meloidogyne incognita. Lett. Drug Des. Discov. 2017, 14, 323–329. doi: 10.2174/1570180813666160930164327

    48. [48]

      Zhai, Z. W.; Wang, Q.; Shen, Z. H.; Tan, C. X.; Weng, J. Q.; Liu, X. H. Synthesis and biological activity of 1, 2, 4-triazole thioether derivatives containing pyrazole moiety. Chin. J. Org. Chem. 2017, 37, 232–236. doi: 10.6023/cjoc201607031

    49. [49]

      Min, L. J.; Zhai, Z. W.; Shi, Y. X.; Han, L.; Tan, C. X.; Weng, J. Q.; Li, B. J.; Zhang, Y. G.; Liu, X. H. Synthesis and biological activity of acyl thiourea containing difluoromethyl pyrazole motif. Phosphorus Sulfur Silicon Relat. Elem. 2019, doi: 10.1080/10426507.2019.1633530.

    50. [50]

      Liu, X. H.; Qiao, L.; Zhai, Z. W.; Cai, P. P.; Cantrell, C. L.; ; Tan, C. X.; Weng, J. Q.; Han, L.; Wu, H. K. Novel 4-pyrazole carboxamide derivatives containing flexible chain motif: design, synthesis and antifungal activity. Pest Manag. Sci. 2019, doi: 10.1002/ps.5463.

    51. [51]

      Sun, N. B.; Shen, Z. H.; Zhai, Z. W.; Wu, H. K.; Weng, J. Q.; Tan, C. X.; Liu, X. H. Design, synthesis, fungicidal activity and docking study of acyl urea derivatives containing pyrazole moiety. Chin. J. Org. Chem. 2017, 37, 2044–2049. doi: 10.6023/cjoc201702003

    52. [52]

      Sun, N. B.; Zhai, Z. W.; Shen, Z. H.; Weng, J. Q.; Tan, C. X.; Liu, X. H.; Han, L. Synthesis, crystal structure and antifungal activity of N-((2, 6-difluorophenyl)carbamoyl)1, 3-dimethyl-1H-pyrazole-4-carboxamide. Chin. J. Struct. Chem. 2017, 36, 1667–1672.

    53. [53]

      Sheldrick, G. M. SHELXS97 and SHELXL97. University of Göttingen, Germany 1997.

    54. [54]

      Liu, X. H.; Xu, X. Y.; Tan, C. X.; Weng, J. Q.; Xin, J. H.; Chen, J. Synthesis, crystal structure, herbicidal activities and 3D-QSAR study of some novel 1, 2, 4-triazolo[4, 3-a]pyridine derivatives. Pest Manag. Sci. 2015, 71, 292–301. doi: 10.1002/ps.3804

    55. [55]

      Wang, H.; Zhai, Z. W.; Shi, Y. X.; Tan, C. X.; Weng, J. Q.; Han, L.; Li, B. J.; Liu, X. H. Novel trifluoromethylpyrazole acyl urea derivatives: synthesis, crystal structure, fungicidal activity and docking study. J. Mol. Struct. 2018, 1171, 631–638. doi: 10.1016/j.molstruc.2018.06.050

    56. [56]

      Liu, X. H.; Weng, J. Q.; Tan, C. X. Synthesis, crystal structure, and fungicidal activity of 5-(4-cyclopropyl-5-((3-fluorobenzyl)thio)-4H-1, 2, 4-triazol-3-yl)-4-methyl-1, 2, 3-thiadiazole. J. Chem. 2013, 2013, 306361.

  • Scheme 1  Synthetic route of the title compound

    Figure 1  Molecular structure of the title compound

    Figure 2  Packing of the title compound

    Table 1.  Selected Bond Lengths (Å) and Bond Angles (°) for the Title Compound

    Bond Dist. Angle (°)
    O(1)–C(7) 1.2191(18) C(7)–N(1)–C(1) 127.87(13)
    O(2)–C(8) 1.2188(18) C(8)–N(2)–C(7) 128.61(13)
    N(1)–C(1) 1.415(2) C(6)–C(1)–N(1) 122.82(14)
    O(2)–C(7) 1.2333(15) C(6)–C(1)–C(2) 120.67(15)
    N(2)–C(7) 1.401(2) O(1)–C(7)–N(2) 118.41(14)
    N(2)–C(8) 1.3707(19) N(1)–C(7)–N(2) 115.87(13)
    N(3)–C(10) 1.311(2) O(2)–C(8)–N(2) 122.72(15)
    N(3)–C(11) 1.337(2) O(2)–C(8)–C(9) 122.60(14)
    C(1)–C(2) 1.398(2) N(2)–C(8)–C(9) 114.62(13)
    C(1)–C(6) 1.387(2) C(10)–C(9)–C(8) 123.15(14)
    C(2)–C(3) 1.386(2) C(13)–C(9)–C(8) 120.66(14)
    下载: 导出CSV

    Table 2.  Hydrogen-bond Parameters (Å) of the Title Compound 4

    D–H···A d(D–H) d(H···A) d(D···A) ∠(DHA)
    N(2)–H(2)···O(1)# 0.86 2.66 2.865(6) 170
    N(1)–H(1)···O(2) 0.86 1.96 2.656(6) 138
    C(6)–H(6)···O(1) 0.93 2.29 2.873(2) 120.
    Symmetry transformations used to generate the equivalent atoms: #: –x, 1 – y, 1 – z
    下载: 导出CSV

    Table 3.  Fungicidal Activity of the Title Compound 4

    No. FO CA BB AI GZ SS BC RS PI PC
    4 40.0 40.0 22.2 33.3 57.1 11.1 45.5 18.5 5.9 10.0
    Control 29.4 100 63.6 88.9 28.6 96.4 63.6 88.4 27.3 16.7
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  374
  • HTML全文浏览量:  15
文章相关
  • 发布日期:  2020-03-01
  • 收稿日期:  2019-05-16
  • 接受日期:  2019-07-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章