具有异质结的铋系光催化剂研究进展

陈浪 贺捷 刘英 陈鹏 区泽堂 尹双凤

引用本文: 陈浪,  贺捷,  刘英,  陈鹏,  区泽堂,  尹双凤. 具有异质结的铋系光催化剂研究进展[J]. 催化学报, 2016, 37(6): 780-791. doi: 10.1016/S1872-2067(15)61061-0 shu
Citation:  Lang Chen,  Jie He,  Ying Liu,  Peng Chen,  Chak-Tong Au,  Shuang-Feng Yin. Recent advances in bismuth-containing photocatalysts with heterojunctions[J]. Chinese Journal of Catalysis, 2016, 37(6): 780-791. doi: 10.1016/S1872-2067(15)61061-0 shu

具有异质结的铋系光催化剂研究进展

  • 基金项目:

    博士后科学基金(2014M562098)

    中央高校基本科研业务费.

    国家自然科学基金(21401054, 21476065)

摘要: 由于人类面临的能源危机与环境污染问题日益严重, 光催化技术作为最有可能解决这两大问题的技术而备受关注. 其中, 光催化剂是光催化技术的核心. 开发具有宽光谱响应、高载流子分离效率的光催化剂既是研究热点也是难点. 铋系光催化剂具有较强的可见光吸收能力. 但是, 提高铋系光催化剂对入射光的吸收效率、降低光生载流子复合效率仍是提高其光催化活性的关键. 目前主要通过以下策略来解决这些问题: (1) 贵金属负载, (2) 半导体复合, (3) 金属/非金属掺杂, (4)碳材料修饰, (5) 铋金属负载等. 最后还简要探讨了具有异质结的铋系光催化剂的发展趋势及其潜在应用.
采用贵金属负载于铋系光催化剂 (构建肖特基结), 可以通过等离子体共振效应拓宽铋系光催化剂的光吸收范围, 同时贵金属还能有效转移半导体上的光生电子, 促进光生载流子的有效分离. 但是, 采用贵金属负载存在昂贵、容易发生团聚等不足. 通过半导体之间构建紧密异质结, 不仅可以调节所制备复合催化剂的能带结构, 满足不同光催化反应的要求, 而且由于内电场的存在可以促进光生载流子定向转移, 从而提高光生载流子的分离效率. 除此之外, 通过杂原子掺杂可以在原子层面上构建异质结结构, 也能有效抑制光生载流子的复合. 近年来, 通过与具有较好导电性能的碳材料复合, 可以快速转移铋系半导体上产生的光子, 提高光催化剂的活性和量子效率. 铋纳米颗粒具有与贵金属类似的性能, 通过采用铋金属对铋系半导体进行负载也可以发生等离子体共振效应, 从而可以提高铋系半导体的活性. 最后, 作者展望了铋系半导体复合光催化剂发展的三个重要方向: (1) 创制非化学计量比的铋系半导体复合光催化材料; (2) 通过与还原能力更强的半导体构建复合光催化材料, 实现光催化 CO2 还原制备有机物和光催化全解水的应用中去; (3) 充分利用铋系半导体化合物具有较强氧化能力的优点, 将其应用于光催化有机物合成中, 比如光催化甲苯类有机物选择性氧化等.

English

    1. [1] W. Wang, M. O. Tade, Z. P. Shao, Chem. Soc. Rev., 2015, 44, 5371-5408.

    2. [2] C. L. Yu, W. Q. Zhou, J. C. Yu, H. Liu, L. F. Wei, Chin. J. Catal., 2014, 35, 1609-1618.

    3. [3] X. J. Lang, X. D. Chen, J. C. Zhao, Chem. Soc. Rev., 2014, 43, 473-486.

    4. [4] H. H. Chen, C. F. Nanavakkara, V. H. Grassian, Chem. Rev., 2012, 112, 5919-5948.

    5. [5] L. Shi, W. J. Xia, Chem. Soc. Rev., 2012, 41, 7687-7697.

    6. [6] C. P. Wu, Y. Zhou, Z. G. Zou, Chin. J. Catal., 2011, 32, 1565-1572.

    7. [7] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38.

    8. [8] T. Froeschl, U. Hoermann, P. Kubiak, G. Kucerova, M. Pfanzelt, C. K. Weiss, R. J. Behm, N. Husing, U. Kaiser, K. Landfester, Chem. Soc. Rev., 2012, 41, 5313-5360.

    9. [9] H. Tada, M. Fujishima, H. Kobayashi, Chem. Soc. Rev., 2011, 40, 4232-4243.

    10. [10] R. A. He, S. W. Cao, P. Zhou, J. G. Yu, Chin. J. Catal., 2014, 35, 989-1007.

    11. [11] X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang, C. Li, J. Am. Chem. Soc., 2008, 130, 7176-7177.

    12. [12] J. Zhang, Q. Xu, Z. C. Feng, M. J. Li, C. Li, Angew. Chem. Int. Ed., 2008, 120, 1766-1769.

    13. [13] H. L. Wang, L. S. Zhang, Z. G. Chen, J. Q. Hu, S. J. Li, Z. H. Wang, J. S. Liu, X. C. Wang, Chem. Soc. Rev., 2014, 43, 5234-5244.

    14. [14] J. C. Colmenares, R. Luque, Chem. Soc. Rev., 2014, 43, 765-778.

    15. [15] Y. Q. Qu, X. F. Duan, Chem. Soc. Rev., 2013, 42, 2568-2580.

    16. [16] G. Baffou, R. Quidant, Chem. Soc. Rev., 2014, 43, 3898-3907.

    17. [17] G. Manna, R. Bose, N. Pradhan, Angew. Chem. Int. Ed., 2014, 53, 6743-6746.

    18. [18] M. Qamar, R. B. Elsayed, K. R. Alhooshani, M. I. Ahmed, D. W. Bahnemann, ASC Appl. Mater. Interfaces, 2015, 7, 1257-1269.

    19. [19] B. F. Luo, D. B. Xu, G. L. Wu, M. M. Wu, W. D. Shi, M. Chen, ASC Appl. Mater. Interfaces, 2015, 7, 17061-17069.

    20. [20] F. Dong, Q. Y. Li, Y. Zhou, Y. J. Sun, H. D. Zhang, Z. B. Wu, Dalton Trans., 2014, 43, 9468-9480.

    21. [21] M. H. Fulekar, A. Singh, D. P. Dutta, M. Roy, A. Ballal, A. K. Tyagi, RSC Adv., 2014, 4, 10097-10107.

    22. [22] C. L. Yu, F. F. Cao, G. Li, R. F. Wei, J. C. Yu, R. C. Jin, Q. Z. Fan, C. Y. Wang, Sep. Purf. Technol., 2013, 120, 110-122.

    23. [23] Y. N. Guo, L. Chen, F. Y. Ma, S. Q. Zhang, Y. X. Yang, X. Yuan, Y. H. Gao, J. Hazard. Mater., 2011, 189, 614-618.

    24. [24] X. D. Wang, G. I. N. Waterhouse, D. R. G. Mitchell, K. Price, R. A. Caruso, ChemCatChem, 2011, 3, 1763-1771.

    25. [25] X. F. Zhang, Y. B. Zhang, X. Quan, S. Chen, J. Hazard. Mater., 2009, 167, 911-914.

    26. [26] L. Chen, R. Huang, Y. J. Ma, S. L. Luo, C. T. Au, S. F. Yin, RSC Adv., 2013, 3, 24354-24361.

    27. [27] D. Y. Li, Y. G. Zhang, Y. L. Zhang, X. F. Zhou, S. J. Guo, J. Hazard. Mater., 2013, 258-259, 42-49.

    28. [28] B. Naik, N. K. M. Parida, G. C. Behera, ChemCatChem, 2011, 3, 311-318.

    29. [29] N. Li, L. Zhu, W. D. Zhang, Y. X. Yu, W. H. Zhang, M. F. Huo, J. Alloys Comp., 2011, 509, 9770-9775.

    30. [30] L. Q. Jing, J. Wang, Y. C. Qu, Y. B. Luan, Appl. Surface Sci., 2009, 256, 657-663.

    31. [31] J. Lu, Z. S. Wang, Y. Zhang, X. F. Zhou, J. Nanomater., 2013, 125409.

    32. [32] X. X. Wei, H. T. Cui, S. Q. Guo, L. F. Zhao, W. Li, J. Hazard. Mater., 2013, 263, 650-658.

    33. [33] L. Li, X. D. Huang, J. Q. Zhang, W. Z. Zhang, F. Y. Ma, Z. X. Xiao, S. Gai, D. D. Wang, N. Li, J. Colloid Interface Sci., 2015, 443, 13-22.

    34. [34] Y. Y. Yang, L. L. Xu, C. Y. Su, J. X. Che, W. J. Sun, H. Gao, J. Nanomater., 2014, 130539.

    35. [35] C. J. Li, P. Zhang, R. Lv, J. W. Lu, T. Wang, S. P. Wang, H. F. Wang, J. L. Gong, Small, 2013, 9, 3951-3956.

    36. [36] M. Y. Zhang, L. Li, Y. Liu, L. L. Xu, X. T. Zhang, J. Mol. Catal. A, 2015, 400, 154-161.

    37. [37] Y. S. Xu, W. D. Zhang, Dalton Trans., 2013, 42, 1094-1101.

    38. [38] L. Chen, J. He, M. Xiong, Q. Yuan, Y. W. Zhang, F. Wang, S. L. Luo, C. T. Au, S. F. Yin, RSC Adv., 2015, 5, 33747-33754.

    39. [39] S. Shamaila, A. K. L. Sajjad, F. Chen, J. L. Zhang, J. Colloid Interface Sci., 2011, 356, 465-472.

    40. [40] R. Q. Guo, L. Fang, W. Dong, F. G. Zheng, M. R. Shen, J. Mater. Chem., 2011, 21, 18645-18652.

    41. [41] W. Ramadan, P. A. Shaikh, S. Ebrahim, A. Ramadan, B. Hannoyer, S. Jouen, X. Sauvage, S. Ogale, J. Nanopart. Res., 2013, 15, 1848/1- 1848/10.

    42. [42] J. Xu, W. Z. Wang, J. Wang, Y. J. Liang, Appl. Surface Sci., 2015, 349, 529-537.

    43. [43] E. S. Kim, H. J. Kang, G. Magesh, J. Y. Kim, J. W. Jang, J. S. Lee, ACS Appl. Mater. Interfaces, 2014, 6, 17762-17769.

    44. [44] W. Q. Cui, W. J. An, L. Liu, J. S. Hu, Y. H. Liang, J. Hazard. Mater., 2014, 280, 417-427.

    45. [45] E. Aguilera-Ruiz, U. M. Garcia-Perez, M. De La Garza-Galvan, P. Zambrano-Robledo, B. Bermudez-Reyes, J. Peral, Appl. Surface Sci., 2015, 328, 361-367.

    46. [46] H. Q. Li, W. S. Hong, Y. M. Cui, X. Y. Hu, S. H. Fan, L. J. Zhu, Mater. Sci. Eng. B, 2014, 181, 1-8.

    47. [47] Q. Yuan, L. Chen, M. Xiong, J. He, S. L. Luo, C. T. Au, S. F. Yin, Chem. Eng. J., 2014, 255, 394-402.

    48. [48] R. G. Li, F. X. Zhang, D. E. Wang, J. X. Yang, M. R. Li, J. Zhu, X. Zhou, H. X. Han, C. Li, Nat. Commun., 2013, 4, 1432.

    49. [49] H. Y. Li, Y. J. Sun, B. Cai, S. Y. Gan, D. X. Han, N. Li, T. S. Wu, Appl. Catal. B, 2015, 170-171, 206-214.

    50. [50] M. L. Guan, D. K. Ma, S. W. Hu, Y. J. Chen, S. M. Huang, Inorg. Chem., 2011, 50, 800-805.

    51. [51] Y. F. Cheng, H. Wang, Y. Zhu, F. Liao, Z. P. Li, J. K. Li, J. Mater. Sci.: Mater. Electron., 2015, 26, 1268-1274.

    52. [52] L. Chen, Q. Zhang, R. Huang, S. F. Yin, S. L. Luo, C. T. Au, Dalton Trans., 2012, 41, 9513-9518.

    53. [53] Y. Peng, M. Yan, Q. G. Chen, C. M. Fan, H. Y. Zhou, A. W. Xu, J. Mater. Chem. A, 2014, 2, 8517-8524.

    54. [54] L. Zhang, W. Z. Wang, S. M. Sun, D. Jiang, E. P. Gao, CrystEngComm, 2013, 15, 10043-10048.

    55. [55] Z. S. Liu, H. S. Ran, J. N. Niu, P. Z. Feng, Y. B. Zhou, J. Colloid Interface Sci., 2014, 431, 187-193.

    56. [56] T. B. Li, G. Chen, C. Zhou, Z. Y. Shen, R. C. Jin, J. X. Sun, Dalton Trans., 2011, 40, 6751-6758.

    57. [57] H. L. Lin, H. F. Ye, X. Li, J. Cao, S. F. Chen, Ceram. Int., 2014, 40, 9743-9750.

    58. [58] J. Cao, C. C. Zhou, H. L. Lin, B. Y. Xu, S. F. Chen, Appl. Surface Sci., 2013, 284, 263-269.

    59. [59] L. Chen, S. F. Yin, S. L. Luo, R. Huang, Q. Zhang, T. Hong, C. T. Au, Ind. Eng. Chem. Res., 2012, 51, 6760-6768.

    60. [60] J. Cao, X. Li, H. L. Lin, S. F. Chen, X. L. Fu, J. Hazard Mater., 2012, 239-240, 316-324.

    61. [61] Y. H. Yan, Z. X. Zhou, X. H. Zhao, J. G. Zhou, J. Colloid Interface Sci., 2014, 435, 91-98.

    62. [62] L. Chen, J. He, Q. Yuan, Y. Liu, C. T. Au, S. F. Yin, J. Mater. Chem. A, 2015, 3, 1096-1102.

    63. [63] P. Madhusudan, J. R. Ran, J. Zhang, J. G. Yu, G. Liu, Appl. Catal. B, 2011, 110, 286-295.

    64. [64] Y. S. Xu, Y. X. Yu, W. D. Zhang, J. Nanosci. Nanotechnol., 2014, 14, 6800-6808.

    65. [65] Y. H. Xiang, P. Ju, Y. Wang, Y. Sun, D. Zhang, J. G. Yu, Chem. Eng. J., 2016, 288, 264-275.

    66. [66] S. Q. Han, J. Li, K. L. Yang, J. Lin, Chin. J. Catal., 2015, 36, 2119-2126.

    67. [67] F. Chen, C. G. Niu, Q. Yang, X. M. Li, G. M. Zeng, Ceram. Int., 2016, 42, 2515-2525.

    68. [68] S. Xue, Z. W. Wei, X. Y. Huo, W. H. Xie, S. Y. Li, S. N. Shang, D. Y. H, Appl. Surf. Sci., 2015, 355, 1107-1115.

    69. [69] Y. H. Yan, Z. X. Zhou, Y. Chen, L. L. Qiu, C. P. Gao, J. G. Zhou, J. Alloys Compouds, 2014, 605, 102-108.

    70. [70] J. G. Huo, C. Yang, Z. Wang, W. L. Zhou, S. Q. Jiao, H. M. Zhu, Appl. Catal. B, 2013, 142-143, 504-511.

    71. [71] L. Chen, R. Huang, S. F. Yin, S. L. Luo, C. T. Au, Chem. Eng. J., 2012, 193-194, 123-130.

    72. [72] F. Dong, X. Feng, Y. X. Zhang, C. F. Gao, Z. B. Wu, RSC Adv., 2015, 5, 11714-11723.

    73. [73] J. P. Zou, S. L. Luo, L. Z. Zhang, J. Ma, S. L. Lie, L. S. Zhang, X. B. Luo, Y. Luo, G. S. Zeng, C. T. Au, Appl. Catal. B, 2013, 140-141, 608-618.

    74. [74] P. W. Lv, M. Zheng, X. Wang, F. Huang, J. Alloys Compounds, 2014, 583, 285-290.

    75. [75] S. H. Chen, Z. Yin, S. L. Luo, C. T. Au, X. J. Li, Mater. Res. Bull, 2013, 48, 725-729.

    76. [76] H. H. Gan, G. K. Zhang, Y. D. Guo, J. Colloid Interfaces Sci., 2012, 386, 373-380.

    77. [77] X. Huang, X. Y. Qi, F. Boey, H. Zhang, Chem. Soc. Rev., 2012, 41, 666-686.

    78. [78] X. M. Tu, S. L. Luo, G. X. Chen, J. H. Li, Chem. Eur. J., 2012, 18, 14359-14366.

    79. [79] S. Gupta, V. Subramanian, ACS Appl. Mater. Interfaces, 2014, 6, 18597-18608.

    80. [80] Z. T. Hu, J. C. Liu, X. L. Yan, W. D. Oh, T. T. Lim, Chem. Eng. J., 2015, 262, 1022-1032.

    81. [81] H. J. Sun, Y. Liu, Y. Zhang, L. Lv, J. Zhou, W. Chen, J. Mater. Sci.: Mater. Electron., 2014, 25, 4212-4218.

    82. [82] J. F. Dai, T. Xian, L. J. Di, H. Yang, J. Nanomater., 2013, 642897.

    83. [83] Q. H. Li, Y. B. Yuan, Z. H. Chen, X. Jin, T. H. Wei, Y. Li, Y. C. Qin, W. F. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 12798-12806.

    84. [84] X. J. Liu, L. K. Pan, T. Lv, Z. Sun, C. Q. Sun, J. Colloid Interface Sci., 2013, 408, 145-150.

    85. [85] H. W. Lv, X. P. Shen, Z. Y. Ji, D. Z. Qiu, G. X. Zhu, Y. L. Bi, Appl. Surface Sci., 2013, 284, 308-314.

    86. [86] C. Wang, G. H. Zhang, C. Zhang, M. M. Wu, M. Yan, W. Q. Fan, W. D. Shi, J Colloid Interface Sci., 2014, 435: 156-163.

    87. [87] R. G. He, S. W. Cao, D. P. Guo, B. Cheng, S. Waneh, A. A. Al-Ghamdi, J. G. Yu, Ceram. Int., 2015, 41, 3511-3517.

    88. [88] M. Shang, W. Z. Wang, S. M. Sun, J. Ren, L. Zhou, L. Zhang, J. Phys. Chem. C, 2009, 113, 20228-20233.

    89. [89] P. M. Dziewonski, M. Grzeszczuk, Electrochim. Acta, 2010, 55, 3336-3347.

    90. [90] H. C. Liang, X. Z. Li, Appl. Catal. B, 2009, 86, 8-17.

    91. [91] Q. Z. Luo, X. Y. Li, D. S. Wang, Y. H. Wang, J. An, J. Mater. Sci., 2011, 46, 1646-1654.

    92. [92] Z. J. Zhang, W. Z. Wang, E. P. Gao, J. Mater. Sci., 2014, 49, 7325-7332.

    93. [93] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater., 2009, 8, 76-80.

    94. [94] G. Liu, P. Niu, C. H. Sun, S. C. Smith, Z. G. Chen, G. Q. Lu, H. M. Cheng, J. Am. Chem. Soc., 2010, 132, 11642-11648.

    95. [95] X. H. Li, X. C. Wang, M. Antonietti, Chem. Sci., 2012, 3, 2170-2174.

    96. [96] Y. Wang, X. C. Wang, M. Antonietti, Angew. Chem. Int. Ed., 2012, 51, 68-89.

    97. [97] T. T. Li, L. H. Zhao, Y. M. He, J. Cai, M. F. Luo, J. J. Lin, Appl. Catal. B, 2013, 129, 255-263.

    98. [98] Y. L. Tian, B. B. Chang, J. L. Lu, J. Fu, F. N. Xi, X. P. Dong, ACS Appl. Mater. Interfaces, 2013, 5, 7079-7085.

    99. [99] C. J. Li, S. P. Wang, T. Wang, Y. J. Wei, P. Zhang, J. L. Gong, Small, 2014, 10, 2783-2790.

    100. [100] F. Chang, Y. C. Xie, J. Zhang, J. Chen, C. L. Li, J. Wang, J. R. Luo, B. Q. Deng, X. F. Hu, RSC Adv., 2014, 4, 28519-28528.

    101. [101] W. Chen, T. Y. Liu, T. Huang, X. H. Liu, J. W. Zhu, G. R. Duan, X. J. Yang, Appl. Surface Sci., 2015, 355, 379-387.

    102. [102] M. Q. He, D. X. Zhao, J. X. Xia, L. Xu, J. Di, H. Xu, S. Yin, H. M. Li, Mater. Sci. Semcond. Process., 2015, 32, 117-124.

    103. [103] X. F. Wang, W. W. Mao, J. Zhang, Y. M. Huan, C. Y. Quan, Q. X. Zhang, T. Yang, J. P. Yang, X. A. Li, W. Huang, J. Colloid Interface Sci., 2015, 448, 17-23.

    104. [104] M. Xiong, L. Chen, Q. Yuan, J. He, S. L. Luo, C. T. Au, S. F. Yin, Dalton Trans., 2014, 43, 8331-8337.

    105. [105] M. Xiong, L. Chen, Q. Yuan, J. He, S. L. Luo, C. T. Au, S. F. Yin, Carbon, 2015, 86, 217-224.

    106. [106] J. H. Zhang, F. Z. Ren, M. S. Deng, Y. X. Wang, Phys. Chem. Chem. Phys., 2015, 17, 10218-10226.

    107. [107] A. A. Alemi, R. Kashfi, B. Shabani, J. Mol. Catal. A, 2014, 392, 290-298.

    108. [108] V. I. Merupo, S. Velumani, K. Ordon, N. Errien, J. Szade, A. H. Kassiba, CrystEngComm, 2015, 17, 3366-3375.

    109. [109] C. Karunakaran, S. Kalaivani, P. Vinayagamoorthy, Mater. Exp., 2014, 4, 125-134.

    110. [110] W. Xie, W. Hu, L. L. Zou, D. H. Bao, Ceram. Int., 2015, 41, S265-S273.

    111. [111] J. F. Niu, S. Y. Ding, L. W. Zhang, J. B. Zhao, C. H. Feng, Chemosphere, 2013, 93, 1-8.

    112. [112] L. F. Yin, J. F. Niu, Z. Y. Shen, J. Chen, Envorn. Sci. Technol., 2010, 44, 5581-5586.

    113. [113] C. Karunakaran, S. Kalaivani, Mater. Sci. Semcond. Process., 2014, 27, 352-361.

    114. [114] Y. Wang, Y. Y. Wen, H. M. Ding, Y. K. Shan, J. Mater. Sci., 2010, 45, 1385-1392.

    115. [115] S. Usai, S. Obregon, A. I. Becerro, G. J. Colon, J. Phys. Chem. C, 2013, 117, 24479-24484.

    116. [116] S. Obregon, G. Colon, Appl. Catal. B, 2014, 158-159, 242-249.

    117. [117] T. F. Zhou, J. C. Hu, J. L. Li, Appl. Catal. B, 2011, 110, 221-230.

    118. [118] M. Nussbaum, N. Shaham-Waldmann, Y. Paz, J. Photochem. Photobiol. A, 2014, 290, 11-21.

    119. [119] Y. Zhou, W. Li, W. C. Wang, R. Y. Zhang, Y. H. Lin, Superlattices Microstruct., 2015, 82, 67-74.

    120. [120] W. J. Ren, Z. H. Ai, F. L. Jia, L. Z. Zhang, X. X. Fan, Z. G. Zou, Appl. Catal. B, 2007, 69, 138-144.

    121. [121] C. Yin, S. M. Zhu, Z. X. Chen, W. Zhang, J. J. Gu, D. Zhang, J. Mater. Chem. A, 2013, 1, 8367-8378.

    122. [122] G. P. Dai, S. Q. Liu, Y. Liang, J. Alloys Comp., 2014, 608, 44-48.

    123. [123] M. M. Yao, L. H. Gan, M. X. Liu, P. K. Tripathi, Y. F. Liu, Z. H. Hu, J. Mater. Eng. Perform., 2015, 24, 2359-2367.

    124. [124] Z. B. Zhang, X. Z. Sun, M. S. Dresselhaus, J. Y. Ying, Phys. Rev. B, 2000, 61, 4850-4861.

    125. [125] A. Hameed, T. Montini, V. Gombac, P. Fornasiero, J. Am. Chem. Soc., 2008, 130, 9658-9659.

    126. [126] H. H. Jiang, J. J. Liu, K. Cheng, W. B. Sun, J. Lin, J. Phys. Chem. C, 2013, 117, 20029-20036.

    127. [127] X. W. Liu, H. Q. Cao, J. F. Yin, Nano Res., 2011, 4, 470-482.

    128. [128] F. Dong, Q. Y. Li, Y. J. Sun, W. K. Ho, ACS Catal., 2014, 4, 4341-4350.

    129. [129] Y. Liu, L. Chen, Q. Yuan, J. He, C. T. Au, S. F. Yin, Chem. Commun., 2016, 52, 1274-1277.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  565
  • HTML全文浏览量:  77
文章相关
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-02-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章