纳米基因扩增技术及其应用

桑付明 李鑫 刘佳

引用本文: 桑付明,  李鑫,  刘佳. 纳米基因扩增技术及其应用[J]. 分析化学, 2017, 45(11): 1745-1753. doi: 10.11895/j.issn.0253-3820.170097 shu
Citation:  SANG Fu-Ming,  LI Xin,  LIU Jia. Development of Nano-Polymerase Chain Reaction and Its Application[J]. Chinese Journal of Analytical Chemistry, 2017, 45(11): 1745-1753. doi: 10.11895/j.issn.0253-3820.170097 shu

纳米基因扩增技术及其应用

  • 基金项目:

    本文系国家自然科学基金(No.21407035)、山东省自然科学基金(No.ZR2014BM021)和威海市大学共建项目(No.2014XGJ15)资助

摘要: 聚合酶链式反应(PCR)是20世纪80年代中期发展起来的一种应用广泛的体外DNA扩增技术,但目前该技术仍然存在着一些问题,如特异性差、灵敏度低和假阳性等。近年来,随着纳米科技的发展,一些纳米粒子如金属纳米粒子、碳纳米材料、量子点和纳米金属氧化物等被引入到PCR反应体系中,即纳米基因扩增技术(NanoPCR)。该技术大幅度提高了PCR的扩增效率、选择性、灵敏度和特异性,推动了生物学技术的发展,具有非常重要的理论意义和应用价值。本文综述了近年来纳米基因扩增技术的主要研究进展、反应机理,并探讨了其应用研究。

English

    1. [1]

      Mullis K B, Faloona F A. Methods Enzymol., 1987, 155:335-350

    2. [2]

      Filteau M J, Lagace G. LaPointe G, Roy D G. Syst. Appl. Microbiol., 2010, 33(3):165-173

    3. [3]

      Tiba M R, Moura d C, Carazzolle M F, Leite D d S. Braz. J. Infect. Dis., 2011, 15(2):144-150

    4. [4]

      Jung Y L, Jung C, Parab H, Park H G. ChemBioChem, 2011, 12(12):1387-1390

    5. [5]

      Huber M, Mündlein A, Dornstauder E, Schneeberger C, Tempfer C B, Mueller M W, Schmidt W M. Anal. Biochem., 2002, 303(1):25-33

    6. [6]

      Kasai K, Nakamura Y, White R. J. Forensic Sci., 1990, 35(5):1196-1200

    7. [7]

      Zhang Z Z, Yang X, Meng L Y, Liu F, Shen C C, Yang W G. BioTechniques, 2009, 47(3):775-779

    8. [8]

      HE Qi-Di, HUANG Dan-Ping, HUANG Guan, CHEN Zuan-Guang. Chinese J. Anal. Chem., 2016, 44(4):542-550 何启迪, 黄丹萍, 黄 冠, 陈缵光. 分析化学, 2016, 44(4):542-550

    9. [9]

      Varadaraj K, Skinner D M. Gene, 1994, 140(1):1-5

    10. [10]

      Henke W, Herdel K, Jung K, Schnorr D, Loening S A. Nucleic Acids Res., 1997, 25(19):3957-3958

    11. [11]

      Chou Q, Russell M, Birch D E, Raymond J, Bloch W. Nucleic Acids Res., 1992, 20(16):4371

    12. [12]

      Li H K, Huang J H,Lv J H, An H, Zhang X D,Zhang Z Z, Fan C H, Hu J. Angew. Chem. Int. Ed., 2005, 44(32):5100-5103

    13. [13]

      Wang L B, Zhu Y Y, Jiang Y, Qiao R R, Zhu S F, Chen W, Xu C L. J. Phys. Chem. B, 2009, 113(21):7637-7641

    14. [14]

      Cui D X, Tian F R, Kong Y, Titushikin I, Gao H J. Nanotechnology, 2004, 15(1):154-157

    15. [15]

      Nel A E, Mädler L, Velegol D, Xia T, Hoek E M V, Somasundaran P, Klaessig F, Castranova V, Thompson M. Nat. Mater., 2009, 8(7):543-557

    16. [16]

      Pan J K, Li H K, Cao X Y, Huang J H, Zhang X D, Fan C H,Hu J. J. Nanosci. Nanotechnol., 2007, 7(12):4428-4433

    17. [17]

      Vu B V, Litvinov D,Willson R C. Anal. Chem., 2008, 80(14):5462-5467

    18. [18]

      Li M, Lin Y C, Wu CC, Liu H S. Nucleic Acids Res., 2005, 33(21):e184

    19. [19]

      Yang W C, Li X H, Sun J L, Shao Z F. ACS Appl. Mater. Interfaces, 2013, 5(22):11520-11524

    20. [20]

      Girilal M, Mohammed Fayaza A, Mohan Balaji P, Kalaichelvana P T. Colloids Surf. B, 2013, 106(6):165-169

    21. [21]

      Cao X Y, Shi X Y, Yang W C, Zhang X D, Fan C H, Hu J. Analyst, 2009, 134(1):87-89

    22. [22]

      Chen J J, Cao X Y, Guo R, Shen M W, Peng C, Xiao T Y, Shi X Y. Analyst, 2011, 137(1):223-228

    23. [23]

      Cao X Y, Shen M W, Zhang X D, Hu J, Wang J H, Shi X Y. Electrophoresis, 2012, 33(16):2598-2603

    24. [24]

      Walling M A, Novak J A, Shepard J R E. Int. J. Mol. Sci., 2009:10(2):441-491

    25. [25]

      Wang L B, Zhu Y Y, Jiang Y, Qiao R R, Zhu S F, Chen W, Xu C L. J. Phys. Chem. B, 2009, 113(21):7637-7641

    26. [26]

      Ma L, He S B, Huang J, Cao L, Yang F, Li L J. Biochimie, 2009, 91(8):969-973

    27. [27]

      Liang G F, Ma C, Zhu Y L, Li S C, Shao Y H, Wang Y, Xiao Z D. Nanoscale Res. Lett., 2011, 6(1):1-7

    28. [28]

      Sang F M, Yang Y, Zhao H X, Ma M R, Zhang ZZ. J. Exp. Nano., 2015, 10(6):476-482

    29. [29]

      Sang F M, Yang Y, Wang JJ, Huang X Y, Ren J C, Zhang Z Z. J. Exp. Nano., 2014, 9(10):1051-1063

    30. [30]

      Sang F M, Yang Y, Yuan L, Ren J C, Zhang Z Z. Nanoscale, 2015, 7(38):15852-15862

    31. [31]

      Hüttel A K, Steele G A, Witkamp B, Poot M, Kouwenhoven L P, Zant H S J. Nano Lett., 2009, 9(7):2547-2552

    32. [32]

      Cui D X,Tian F R, Kong Y, Titushikin I, Gao H J. Nanotechnology, 2004, 15(1):154-157

    33. [33]

      Zhang Z Z, Wang M C, An H J. Nanotechnology, 2007, 18(35):355706

    34. [34]

      Zhang Z Z, Shen C C, Wang M C, Han H, Cao X H. BioTechniques, 2008, 44(4):537-545

    35. [35]

      Quaglio M, Bianco S, Castagna R, Cocuzza M, Pirri C F. Microelectron. Eng., 2011, 88(8):1860-1863

    36. [36]

      Daniel R, Dreyer R S. Ruoff. Christopher W B. Angew. Chem. Int. Ed., 2010, 49(49):9336-9345

    37. [37]

      Cai W W, Piner R D, Stadermann F J, Park S J, Shaibat M A, Ishii Y, Yang D X, Velamakanni A, An S J, Stoller S M, An J H, Chen D M, Ruoff R S. Science, 2008, 321(5897):1815-1817

    38. [38]

      Jia J, Sun L P, Hu N, Huang G M, Weng J. Small, 2012, 8(13):2011-2015

    39. [39]

      Abdul K R, Kafafy R M, Salleh H M, Faris W F. Nanotechnology, 2012, 23(45):455106

    40. [40]

      Abdul K R, Sonawane P J, Sasi B K, Sahu B S, Pradeep T, Das S K, Mahapatra N R. Nanotechnology, 2010, 21(25):255704

    41. [41]

      Wan W J, Yeow J T W, Dyke M I V. IEEE C Nanotechnol., 2009, 9:458-461

    42. [42]

      Lenka G, Weng W H. Dig. J. Nanomater. Bios., 2013, 8(4):1435-1445

    43. [43]

      Park J Y, Back S H, Chang S J, Lee S J, Lee K J, Park T J. ACS Appl. Mater. Interfaces, 2015, 7(28):15633-15640

    44. [44]

      Ma W, Yin H H, Xu L G, Wang L B, Kuang H, Xu C L. Chem. Commun., 2013, 49(47):5369-5371

    45. [45]

      Li H X, Rothberg L. Proc. Natl. Acad. Sci., 2004, 101(39):14036-14039

    46. [46]

      Yi C Q, Fong CC, Chen W W, Qi S J, Tzang C H, Lee S T, Yang M S. Nanotechnology, 2007, 18(2):1055-1060

    47. [47]

      Mi L J, Wen Y Q, Pan D, Wang Y H, Fan C H, Hu J. Small, 2009, 5(22):2597-2600

    48. [48]

      Lou X H, Zhang Y. ACS Appl. Mater. Interfaces, 2013, 5(13):6276-6284

    49. [49]

      Bai Y L, Cui Y, Paoli G C, Shi C L, Wang D P, Shi X M. ACS Appl. Mater. Interfaces, 2015, 7(24):13142-13153

    50. [50]

      Lin Y, Li J, Yao J, Liang Y, Zhang J, Zhou Q F, Jiang G B. Environ. Chem., 2013, 58(36):4593-4601

    51. [51]

      Xun Z, Zhao X Y, Guan Y F. Nanotechnology, 2013, 24(35):355504

    52. [52]

      Ma X J, Cui Y C, Qiu Z, Zhang B K, Cui S J. J. Virol. Methods, 2013, 193(2):374-378

    53. [53]

      Cui Y, Wang Z, Ma X, Liu J, Cui S. Lett. Appl. Microbiol., 2014, 58(2):163-167

    54. [54]

      Wang X L, Bai A Q, Zhang J, Kong M M, Cui Y C, Ma X J, Ai X, Tang Q H, Cui S J. J. Virol. Methods, 2014, 202(16):106-111

    55. [55]

      Yuan W Z, Li Y N, Li P, Song Q Y, Li L M, Sun J G.J. Virol. Methods, 2015, 220:18-20

    56. [56]

      Yuan W Z, Li J N, Li P, Sun J G, Chen L G, Liu J X.Lett. Appl. Microbiol., 2015, 62(1):63-67

    57. [57]

      Yuan W Z, Li Y N, Wang J C, Wang J F, Sun J G. Vet. Arhiv, 2016, 86(1):1-8

    58. [58]

      Elhusseini D M, Helmy N M, Tammam R H. RSC Adv., 2016, 6(60):54898-54903

    59. [59]

      Rehman A, Sarwar Y, Raza Z A, Hussain S Z, Mustafa T, Khan W S, Ghauri M A, Haque A, Hussain I. Analyst, 2015, 140(21):7366-7372

    60. [60]

      Xu S Y, Yao M S. J. Aerosol. Sci., 2013, 65(65):1-9

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  834
  • HTML全文浏览量:  70
文章相关
  • 收稿日期:  2017-02-17
  • 修回日期:  2017-09-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章