

Citation: Zhao Zhuanxia, Wang Junjiao, Huang Danfeng, Yang Zheng, Zhao Fangxia, Hu Yongqin, Xu Weigang, Hu Yulai. Study on Tin Powder-Promoted Allylation of 3-Aryl-3-hydroxy-2-oxindoles[J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 2026-2034. doi: 10.6023/cjoc202003002

锡粉促进下3-芳基-3-羟基-2-氧化吲哚的烯丙基化反应研究
English
Study on Tin Powder-Promoted Allylation of 3-Aryl-3-hydroxy-2-oxindoles
-
Key words:
- tin powder
- / 3-hydroxy-2-oxindoles
- / allylation
-
1. Introduction
Organotin compounds, an very important class of organometallic compounds, have been intensively applied in organic synthesis because of their good stabilities towards heat, hydrolysis and oxidation, tolerance of functional groups and high selectivity in organic reactions.[1] However, most of the organotin compounds are toxic, and are not atom economic in the reactions.[2] For instance, the commonly used tributyltin compounds Bu3SnR can only transfer the R groups into the product molecules, meanwhile, the Bu3Sn-moiety is discarded as a by-product.[3] This disadvantage limits their application on large scale in industrial. In 1981, Mukaiyama et al.[4] reported for that tin powder could promote the allylation of aldehydes or ketones with allyl bromide to give the corresponding allylic alcohols. This method not only keeps the advantages of organotin reagents but also avoids some of their disadvantages. Afterwards, many studies on tin-powder-promoted allylations were carried out. Up to now, tin-powder-promoted allylation reactions mainly involve the 1, 2-addition reactions of aldehydes, ketones and imines with in situ generated allyltin bromide.[5] (Schemes 1a and 1b). Enol ethers and nitroalkenes were also used as substrates to react with allyl bromide in the presence of tin powder, but the active intermediates were still the in situ generated aldehydes or ketones.[5] Diselenides and disulfides were reported to perform the allylation with allyl bromide and tin powder[7] (Scheme 1c). In view of the advantages of tin-powder-promoted reactions, our group has been committed to the allylation reactions promoted by tin powder, and a series of allylic compounds and nitrogen heterocycles were synthesized.[8] These works greatly extend the application of tin-powder- promoted reactions in organic synthesis. However, until now, tin-powder-promoted reactions mainly limited to the allylation of C=O or C=N double bounds, and there was no report to the other functional groups. In our research works, we find that the in situ generated allyltin bromides are stable in solid state in the absence of solvent. We envision that this property would make them to react with other functional groups, and extend the tin-powder-promoted reactions beyond 1, 2-addition to C=O or C=N double bounds. As we know, carbocations are very important active intermediates in organic reactions and have always played important roles in organic synthesis.[9] In the carbocation family, benzylic carbocations are relatively stable and easily formed. Therefore, we would like to investigate the C—C coupling reaction of solid allyltin bromide with in situ formed benzylic carbocations. Herein, the reaction of 3-aryl-3-hydroxy-2-oxindoles with the in situ formed allyltin bromide to afford 3, 3-disubstituted-2-oxindole derivatives (Scheme 1d) was reported.
Scheme 1
2. Results and discussion
In our initial investigations, a mixture of tin powder (3.5 equiv.) and allyl bromide (3.0 equiv.) in tetrahydrofuran (THF) was refluxed for 5 h, and then the solvent was evaporated off under vacuum to give a white solid residue, which was re-dissolved in 4 mL of dichloromethane (DCM). 3-(p-Methoxylphenyl)-3-hydroxy-2-oxindole (1a, 1 equiv.) and BiCl3 (0.1 equiv.) were added to the mixture. After stirring the mixture at room temperature for another 5 h, the product 3a was obtained in 47% yield and by-product 4a was obtained in 20% yield (Table 1, Entry 1). In order to improve the product yield, the effects of other typical Brönsted acids and Lewis acids on the reaction were investigated. First, Fe(OTf)3, Cu(OTf)2, and HClO4 were found to be equally effective to the reaction (Table 1, Entries 2~19). In consideration of the cost, HClO4 was used to check the other reaction parameters. Thus, the amount of HClO4 was then increased to 1 equiv., and the yield of 3a reached 58% (Table 1, Entry 20). Afterwards, the influence of the molar ratio of the starting materials on the product yield was examined (Table 1, Entries 20~22). It was found that the yield of 3a increased to 87% when the molar ratio of 1a/2/Sn reached 1.0/4.0/4.5. Finally, the effects of solvents on the reaction were screened, and DCM was found to be the suitable solvent (Table 1, Entries 23~28). Other solvents such as DCE, CH3CN and THF gave the products in medium yields, methanol and ethanol did not afford separable product. Therefore, the optimized reaction conditions were the use of 1a, 2 and tin powder in a molar ratio of 1:4.0:4.5 in DCM at room temperature (Table 1, Entry 21).
表 1
Entry Molar ratio of
1:2:SnSolvent Acidb Yieldc/% 3a 4a 1 1.0:3.0:3.5 DCM BiCl3 47 20 2 1.0:3.0:3.5 DCM FeCl3 0 0 3 1.0:3.0:3.5 DCM Fe(OTf)3 47 3 4 1.0:3.0:3.5 DCM InCl3 25 1 5 1.0:3.0:3.5 DCM In(OTf)3 33 2 6 1.0:3.0:3.5 DCM Ni(ClO4)2•6H2O Trace 0 7 1.0:3.0:3.5 DCM NiCl2•6H2O Trace 0 8 1.0:3.0:3.5 DCM Ni(OTf)2 6 1 9 1.0:3.0:3.5 DCM Mg(ClO4)2 19 0 10 1.0:3.0:3.5 DCM BF3•OEt2 5 Trace 11 1.0:3.0:3.5 DCM Sc(OTf)3 13 1 12 1.0:3.0:3.5 DCM Cu(OTf)2 47 4 13 1.0:3.0:3.5 DCM Yb(OTf)3 25 2 14 1.0:3.0:3.5 DCM TfOH 38 1 15 1.0:3.0:3.5 DCM H2SO4 40 2 16 1.0:3.0:3.5 DCM H3PO4 38 3 17 1.0:3.0:3.5 DCM HNO3 29 4 18 1.0:3.0:3.5 DCM HCl 35 3 19 1.0:3.0:3.5 DCM HClO4 46 1 20 1.0:3.0:3.5 DCM HClO4 58 0 21 1.0:4.0:4.5 DCM HClO4 87 0 22 1.0:5.0:5.5 DCM HClO4 82 0 23 1.0:4.0:4.5 DCE HClO4 65 0 24 1.0:4.0:4.5 CH3CN HClO4 54 3 25 1.0:4.0:4.5 THF HClO4 69 0 26 1.0:4.0:4.5 1, 4-Dioxane HClO4 85 0 27 1.0:4.0:4.5 CH3OH HClO4 Trace 0 28 1.0:4.0:4.5 CH3CH2OH HClO4 Trace 0 a All reactions were carried out by using 0.3 mmol of 1a, 0.9~1.2 mmol of 2, 1.05~1.35 mmol of tin powder, 0.03~0.3 mmol of acid in 4 mL of solvent at room temperature for 10 h; bAcid: Entries 1~19, 10 mol%; Entries 20~28, 100 mol%; c Isolated yields. With the optimum reaction conditions in hand, the substrate scopes were examined. At first, the effects of the substituents on the benzene ring and nitrogen atom of the oxindole core were examined by using 3-(p-methoxyl-phenyl)-3-hydroxy-2-oxindoles (1) as substrates. The results indicated that the position of the substituents on the benzene ring of the oxindole core did not influence the reaction too much. For instance, the difference among products 3e, 3f and 3g was the position of chlorine atom on the benzene ring of the oxindole core, but their yields were around 70% (Table 2, 3e, 3f and 3g). The electronic properties of the substituents had a little bit of influence on the product yields. For example, the oxindoles 1 with the electron-donating groups on the phenyl ring of the oxindole core gave the corresponding products in higher yields than those with electron-withdrawing ones (Table 2, 3b and 3c vs. 3d~3i). The protecting groups on the nitrogen atom of the oxindoles 1 did not influence the product yields too much (Table 2, 3j~3p). However, when t-butyloxycar-bonyl group was used as protecting group, it would be deprotected after the reaction (Scheme 2).
Scheme 2
表 2
To further investigate the generality of the substrates, the substituents R3 at 3-position of 3-hydroxy-2-oxindoles were varied. As shown in Table 3, when R3 was 3-indolyl group, the products 6a~6k obtained in good yields under the standard conditions. The electronic properties of the substituents on benzene ring of 3-indolyl groups had influence on the product yields. When the substituents were electron-donating groups, the product yields were higher than the electron-withdrawing ones (Table 3, 6b and 6c vs. 6d). However, when the R3 groups were benzene groups, the substituents on the benzene rings had a great influence on the product yields. For instance, if the R3 was just benzene ring, the product 6p did not be obtained (Table 3, 6p). When the R3 was p-methylphenyl group, the product 6l obtained in 58% yield. When 3-(3, 4-dimethoxyphenyl)-3-hydroxyindolin-2-one was used as substrate, the yield of 6m reached to 85%. The results from 6l~6p indicated that the more electron-donating substituents on the benzene rings of R3 were, the higher the product yields would be. Finally, the aliphatic R3 groups such as allyl and methyl groups were examined, but no corresponding products were formed (Table 3, 6q and 6r).
表 3
In order to further expand the application of the reaction, the benzyl alcohols such as 1-phenylethan-1-ol and diphenylmethanol have been investigated. As shown in Scheme 3, when diphenylmethanol was used as substrate, the reaction took place smoothly and the product 8b was obtained in 48% yield; when 1-phenylethan-1-ol was used as substrate, the reaction did not occur.
Scheme 3
Based on the above results and previous reports, [10] a tentative reaction pathway for the carbocations 9 was proposed as depicted in Scheme 4. 3-Hydroxy-2-oxindoles (1 or 5) were protonated to afford the intermediate 10, which dehydrated to give the carbocations 9. Nucleophilic attachment of in situ formed organotin reagents 11 to the carbocations 9 gave the final products 3 or 6.
Scheme 4
3. Conclusions
In conclusion, tin powder-promoted C—C coupling reaction between allyl bromide and benzylic alcohol was achieved. The tin powder-participated reaction types were extended beyond 1, 2-addition to C=O or C=N double bounds. The protocol provides an efficient way to access potentially bioactive 3, 3-disubstituted-2-oxindole derivatives in good yields, and further expands the application of tin-powder-promoted reactions in organic synthesis.
4. Experimental
4.1 Materials and methods
The solvents were distilled by standard methods. Reagents were obtained from commercial suppliers and used without further purification unless otherwise noted. Silica gel column chromatography was carried out using silica gel 60 (230~400 mesh). Analytical thin layer chromatography (TLC) was done using silica gel GF254. TLC plates were analyzed by an exposure to ultraviolet (UV) light and/or submersion in phosphomolybdic acid solution or submersion in KMnO4 solution or in I2. High-resolution mass spectra were recorded on a Fourier transform ion cyclotron resonance mass spectrometer. NMR experiments were carried out in CDCl3 and (CD3)2CO. 1H NMR and 13C NMR spectra were recorded at 400 or 600 MHz and 100 or 150 MHz spectrometers, respectively. 19F NMR spectra were recorded at 376 MHz spectrometers. Chemical shifts are reported as δ values relative to internal TMS (δ 0.00 for 1H NMR), chloroform (δ 7.26 for 1H NMR), acetone (δ 2.05 for 1H NMR), chloroform (δ 77.16 for 13C NMR), acetone (δ 206.26 for 13C NMR) and CFCl3 (δ 0.00 for 19F NMR). Melting points were uncorrected.
4.2 General procedure for the synthesis of 3, 6 and 8
A mixture of tin powder (1.35 mmol, 4.5 equiv.) and allyl bromide (1.2 mmol, 4.0 equiv.) in THF was refluxed for 5 h, and then the solvent was evaporated off under vacuum to give a white solid residue, which was re-dissolved in 4 mL of DCM. 3-Hydroxy-2-oxindoles 1 or 5 (0.3 mmol, 1 equiv.) and HClO4 (0.3 mmol, 1 equiv.) were added to the mixture. After stirring the mixture at room temperature for another 8~18 h, the saturated NaHCO3 solution (5 mL) was poured into the mixture and stirred for 10 min. The mixture was extracted with EtOAc (10 mL×3). The combined organic phase was dried over MgSO4 and then concentrated. Purification of the residue by silica gel column chromatography using petroleum ether/EtOAc (V/V=3/1) as the eluent furnished the pure products 3, 6 and 8.
3-Allyl-3-(4-methoxyphenyl)indolin-2-one (3a):[9g] 73 mg, 87% yield, yellow solid. m.p. 92~94 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.91 (s, 1H), 7.30~7.27 (m, 2H), 7.25~7.23 (m, 1H), 7.21 (d, J=7.2 Hz, 1H), 7.08 (t, J=7.2 Hz, 1H), 6.92 (d, J=8.0 Hz, 1H), 6.84 (d, J=8.8 Hz, 2H), 5.51~5.41 (m, 1H), 5.06 (d, J=16.8 Hz, 1H), 4.95 (d, J=10.4 Hz, 1H), 3.77 (s, 3H), 3.06~2.96 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 180.2, 159.0, 140.9, 132.6, 132.5, 131.5, 128.3, 128.2, 125.6, 122.6, 119.4, 114.1, 109.9, 56.3, 55.4, 42.0; HRMS (ESI) calcd for C18H17NNaO2 [M+Na]+ 302.1157, found 302.1168.
3-Allyl-3-(4-methoxyphenyl)-5-methylindolin-2-one (3b): 75 mg, 85% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.55 (s, 1H), 7.29 (d, J=8.4 Hz, 2H), 7.03 (d, J=7.8 Hz, 1H), 7.00 (s, 1H), 6.85 (d, J=8.4 Hz, 2H), 6.81 (d, J=7.8 Hz, 1H), 5.49~5.42 (m, 1H), 5.06 (d, J=17.4 Hz, 1H), 4.94 (d, J=9.6 Hz, 1H), 3.77 (s, 3H), 3.05~2.96 (m, 2H), 2.33 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 180.8, 158.8, 138.6, 132.9, 132.6, 132.0, 131.9, 128.6, 128.3, 126.0, 119.2, 114.1, 109.8, 56.5, 55.4, 41.7, 21.3; HRMS (ESI) calcd for C19H19NNaO2 [M+Na]+ 316.1308, found 316.1310.
3-Allyl-5-methoxy-3-(4-methoxyphenyl)indolin-2-one (3c): 76 mg, 82% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.00 (s, 1H), 7.30~7.27 (m, 2H), 6.86~6.83 (m, 2H), 6.83 (s, 1H), 6.80~6.77 (m, 2H), 5.50~5.43 (m, 1H), 5.07 (d, J=17.4 Hz 1H), 4.96 (d, J=10.2 Hz, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.04~2.95 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 180.4, 159.0, 155.9, 134.4, 134.1, 132.5, 131.5, 128.3, 119.4, 114.1, 112.8, 112.6, 110.3, 56.8, 55.9, 55.4, 41.9; HRMS (ESI) calcd for C19H19NNaO3 [M+Na]+ 332.1257, found 332.1255.
3-Allyl-5-fluoro-3-(4-methoxyphenyl)indolin-2-one (3d): 67 mg, 75% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.47 (s, 1H), 7.27~7.24 (m, 2H), 6.96~6.92 (m, 2H), 6.86~6.83 (m, 3H), 5.48~5.41 (m, 1H), 5.05 (d, J=17.4 Hz, 1H), 4.96 (d, J=10.2, 1H), 3.77 (s, 3H), 3.02~2.94 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 180.6, 159.2 (d, J=238.5 Hz), 159.1, 136.9 (d, J=3.0 Hz), 134.4 (d, J=7.5 Hz), 132.0, 130.9, 128.2, 119.8, 114.7 (d, J=24.0 Hz), 114.3, 113.3 (d, J=24.0 Hz), 110.6 (d, J=9.0 Hz), 57.0, 55.4, 41.8; 19F NMR (376 MHz, CDCl3) δ: -125.44 (m); HRMS (ESI) calcd for C18H16FNNaO2 [M+Na]+ 320.1057, found 320.1062.
3-Allyl-5-chloro-3-(4-methoxyphenyl)indolin-2-one (3e): 69 mg, 73% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.97 (br, 1H), 7.25~7.23 (m, 2H), 7.21~7.20 (m, 1H), 7.16 (d, J=1.8 Hz, 1H), 6.86~6.84 (m, 3H), 5.48~5.41 (m, 1H), 5.06 (d, J=17.4 Hz, 1H), 4.96 (d, J=10.2 Hz, 1H), 3.77 (s, 3H), 3.03~2.95 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 180.7, 159.2, 139.7, 134.7, 131.9, 130.7, 128.3, 128.2, 128.0, 125.7, 119.9, 114.3, 111.2, 56.8, 55.4, 41.7; HRMS (ESI) calcd for C18H16ClNNaO2 [M+Na]+ 336.0762, found 336.0763.
3-Allyl-6-chloro-3-(4-methoxyphenyl)indolin-2-one (3f): 66 mg, 70% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.55 (s, 1H), 7.27~7.24 (m, 2H), 7.11 (d, J=7.8 Hz, 1H), 7.05 (dd, J=7.8, 1.8 Hz, 1H), 6.95 (d, J=1.8 Hz 1H), 6.86~6.83 (m, 2H), 5.47~5.41 (m, 1H), 5.04 (d, J=16.8 Hz, 1H), 4.96 (d, J=10.2 Hz, 1H), 3.77 (s, 3H), 3.02~2.95 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 180.7, 159.1, 142.1, 133.9, 132.0, 131.0, 130.9, 128.2, 126.4, 122.6, 119.8, 114.2, 110.8, 56.1, 55.4, 41.8; HRMS (ESI) calcd for C18H16ClNNaO2 [M+Na]+ 336.0762, found 336.0777.
3-Allyl-7-chloro-3-(4-methoxyphenyl)indolin-2-one (3g): 64 mg, 68% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 7.84 (s, 1H), 7.29~7.27 (m, 2H), 7.25 (dd, J=7.8, 0.6 Hz, 1H), 7.12 (d, J=7.8 Hz, 1H), 7.04 (t, J=7.8 Hz, 1H), 6.86~6.84 (m, 2H), 5.49~5.42 (m, 1H), 5.06 (d, J=17.4 Hz, 1H), 4.98 (d, J=10.2 Hz, 1H), 3.78 (s, 3H), 3.05~2.97 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 179.0, 159.2, 138.7, 133.9, 132.1, 130.8, 128.2, 128.1, 123.9, 123.4, 119.8, 115.2, 114.2, 57.5, 55.4, 42.1; HRMS (ESI) calcd for C18H16ClNNaO2 [M+Na]+ 336.0762, found 336.0775.
3-Allyl-5-bromo-3-(4-methoxyphenyl)indolin-2-one (3h): 83 mg, 78% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 9.06 (s, 1H), 7.36 (dd, J=8.4, 1.8 Hz, 1H), 7.30 (d, J=1.8 Hz, 1H), 7.26~7.24 (m, 2H), 6.87~6.85 (m, 2H), 6.81 (d, J=8.4 Hz, 1H), 5.48~5.41 (m, 1H), 5.07 (d, J=17.4 Hz, 1H), 4.97 (d, J=10.2 Hz, 1H), 3.77(s, 3H), 3.03~2.95 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 179.7, 159.2, 140.0, 135.0, 132.0, 131.2, 130.6, 128.6, 128.2, 120.0, 115.3, 114.3, 111.4, 56.6, 55.4, 41.8; HRMS (ESI) calcd for C18H16BrNNaO2 [M+Na]+ 380.0257, found 380.0260.
3-Allyl-5-iodo-3-(4-methoxyphenyl)indolin-2-one (3i):85 mg, 69% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 9.28 (s, 1H), 7.54 (d, J=8.4 Hz, 1H), 7.47 (s, 1H), 7.24 (d, J=9.0 Hz, 2H), 6.87~6.85 (m, 2H), 6.72 (dd, J=8.4, 1.8 Hz, 1H), 5.47~5.40 (m, 1H), 5.07 (d, J=16.8 Hz, 1H), 4.97 (d, J=10.2 Hz, 1H), 3.78 (s, 3H), 3.02~2.95 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 180.1, 159.0, 140.6, 137.0, 135.2, 133.9, 131.7, 130.6, 128.0, 119.8, 114.1, 112.1, 85.0, 56.4, 55.3, 41.5; HRMS (ESI) calcd for C18H16INNaO2 [M+Na]+ 428.0118, found 428.0112.
3-Allyl-3-(4-methoxyphenyl)-1-methylindolin-2-one (3j): 70 mg, 79% yield, yellow solid. m.p. 50~53 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.34~7.31 (m, 1H), 7.31~7.28 (m, 2H), 7.25 (s, 1H), 7.11 (t, J=7.8 Hz, 1H), 6.89 (d, J=7.8 Hz, 1H), 6.84~6.81 (m, 2H), 5.43~5.36 (m, 1H), 5.02 (d, J=16.8, Hz, 1H), 4.91 (d, J=10.2 Hz, 1H), 3.77 (s, 3H), 3.19 (s, 3H), 2.99 (d, J=7.2 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 178.4, 158.9, 144.0, 132.7, 131.9, 131.6, 128.3, 128.2, 125.3, 122.5, 119.2, 114.0, 108.3, 55.9, 55.4, 42.2, 26.5;
3-Allyl-5-methoxy-3-(4-methoxyphenyl)-1-methylindolin-2-one (3k): 78 mg, 80% yield, white oil. 1H NMR (600 MHz, CDCl3) δ: 7.31~7.28 (m, 2H), 6.87~6.86 (m, 1H), 6.85~6.84 (m, 2H), 6.83~6.82 (m, 1H), 6.78 (d, J=8.4 Hz, 1H), 5.44~5.37 (m, 1H), 5.06~5.02 (m, 1H), 4.94~4.92 (m, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 3.17 (s, 3H), 2.99~2.97 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 178.0, 158.9, 156.0, 137.6, 133.3, 132.6, 131.6, 128.3, 119.2, 114.0, 112.7, 112.4, 108.5, 56.3, 55.9, 55.4, 42.1, 26.5; HRMS (ESI) calcd for C20H21NNaO3 [M+Na]+ 346.1414, found 346.1401.
3-Allyl-3-(4-methoxyphenyl)-1, 5-dimethylindolin-2-one(3l): 73 mg, 79% yield, white oil. 1H NMR (600 MHz, CDCl3) δ:7.31~7.29 (m, 2H), 7.12 (d, J=7.8 Hz, 1H), 7.07 (s, 1H), 6.86~6.83 (m, 2H), 6.78 (d, J=7.8 Hz, 1H), 5.44~5.37 (m, 1H), 5.04 (d, J=17.4 Hz, 1H), 4.92 (d, J=10.2 Hz, 1H), 3.77 (s, 3H), 3.18 (s, 3H), 3.03~2.96 (m, 2H), 2.37 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 178.3, 158.8, 141.6, 132.7, 132.1, 132.0, 131.9, 128.5, 128.3, 125.9, 119.0, 114.0, 108.0, 55.9, 55.3, 42.0, 26.4, 21.3; HRMS (ESI) calcd for C20H21NNaO2 [M+Na]+ 330.1465, found 330.1454.
3-Allyl-5-chloro-3-(4-methoxyphenyl)-1-methylindolin-2-one (3m):70 mg, 71% yield, white oil. 1H NMR (600 MHz, CDCl3) δ: 7.30~7.28 (m, 1H), 7.27~7.25 (m, 2H), 7.22 (d, J=1.8 Hz, 1H), 6.85~6.83 (m, 2H), 6.80 (d, J=8.4 Hz, 1H), 5.41~5.34 (m, 1H), 5.05~5.02 (m, 1H), 4.95~4.93 (m, 1H), 3.76 (s, 3H), 3.17 (s, 3H), 2.98~2.96 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 177.9, 159.1, 142.5, 133.8, 132.1, 130.9, 128.3, 128.1, 127.9, 125.5, 119.7, 114.2, 109.2, 56.1, 55.4, 42.0, 26.5; HRMS (ESI) calcd for C19H18ClNNaO2 [M+Na]+ 350.0918, found 350.0909.
3-Allyl-1-benzyl-3-(4-methoxyphenyl)indolin-2-one (3n):[9g] 89 mg, 80% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 7.32~7.29 (m, 2H), 7.28~7.22 (m, 6H), 7.19 (t, J=7.8 Hz, 1H), 7.07 (t, J=7.2 Hz, 1H), 6.86~6.84 (m, 2H), 6.75 (d, J=7.8 Hz, 1H), 5.46~5.39 (m, 1H), 5.08 (d, J=16.8 Hz, 1H), 4.97~4.93 (m, 2H), 4.83 (d, J=15.6 Hz, 1H), 3.78 (s, 3H), 3.11~3.02 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 178.5, 159.0, 143.1, 136.1, 132.7, 132.1, 131.9, 128.8, 128.3, 128.2, 127.7, 127.5, 125.3, 122.6, 119.4, 114.1, 109.4, 55.9, 55.4, 44.0, 42.2.
1, 3-Diallyl-3-(4-methoxyphenyl)indolin-2-one (3o):[9g] 69 mg, 71% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 7.31~7.29 (m, 2H), 7.28 (dd, J=7.8, 1.2 Hz, 1H), 7.26~7.25 (m, 1H), 7.10 (td, J=7.8, 1.2 Hz, 1H), 6.87 (d, J=7.8 Hz, 1H), 6.85~6.82 (m, 2H), 5.82~5.76 (m, 1H), 5.44~5.37 (m, 1H), 5.20~5.18 (m, 1H), 5.17 (d, J=1.8 Hz, 1H), 5.04 (dd, J=16.8, 1.2 Hz, 1H), 4.92 (d, J=10.2 Hz, 1H), 4.39~4.35 (m, 1H), 4.30~4.26 (m, 1H), 3.77 (s, 3H), 3.06~2.98 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 178.1, 158.9, 143.1, 132.6, 132.0, 131.8, 131.6, 128.3, 128.2, 125.3, 122.5, 119.4, 117.5, 114.1, 109.3, 55.8, 55.4, 42.5, 42.2.
3-Allyl-1-butyl-3-(4-methoxyphenyl)indolin-2-one (3p): 79 mg, 79% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 7.32~7.27 (m, 3H), 7.24 (dd, J=7.2, 0.6 Hz, 1H), 7.09 (td, J=7.2, 0.6 Hz, 1H), 6.90 (d, J=7.8 Hz, 1H), 6.85~6.82 (m, 2H), 5.42~5.35 (m, 1H), 5.03 (d, J=16.8 Hz, 1H), 4.91 (d, J=10.2 Hz, 1H), 3.77 (s, 3H), 3.75~3.70 (m, 1H), 3.67~3.62 (m, 1H) 3.04~2.96 (m, 2H), 1.66~1.60 (m, 2H), 1.39~1.32 (m, 2H), 0.93 (t, J=7.8 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ: 178.2, 158.9, 143.5, 132.7, 132.3, 132.0, 128.2, 128.1, 125.3, 122.3, 119.2, 114.0, 108.6, 55.7, 55.4, 42.2, 40.0, 29.7, 20.3, 13.9; HRMS (ESI) calcd for C22H25NNaO2 [M+Na]+ 358.1778, found 358.1794.
3-(Allyloxy)-3-(4-methoxyphenyl)indolin-2-one (4a): 18 mg, 20% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.26 (s, 1H), 7.37~7.28 (m, 4H), 7.13~7.09 (m, 1H), 6.94 (d, J=12.0 Hz, 1H), 6.87~6.82 (m, 2H), 5.99~5.89 (m, 1H), 5.31~5.26 (m, 1H), 5.15~5.13 (m, 1H), 3.99~3.95 (m, 1H), 5.85~5.81 (m, 1H), 3.77 (s, 3H); 13C NMR (150 MHz, CDCl3) δ:177.6, 159.9, 141.5, 134.3, 130.7, 130.2, 128.9, 127.9, 127.4, 126.3, 123.4, 117.1, 114.0, 110.6, 66.8, 55.4; HRMS (ESI) calcd for C18H17NNaO3 [M+Na]+ 318.1106, found 318.1101.
3-Allyl-3-(1H-indol-3-yl)indolin-2-one (6a):[9g] 68 mg, 78% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 9.23 (br, 1H), 8.59 (br, 1H), 7.29 (d, J=8.4 Hz, 1H), 7.20 (t, J=7.8 Hz, 1H), 7.12~7.09 (m, 2H), 7.04 (d, J=8.4 Hz, 1H), 6.99 (t, J=7.2 Hz, 2H), 6.95~6.89 (m, 2H), 5.59~5.52 (m, 1H), 5.12 (d, J=17.4 Hz, 1H), 4.98 (d, J=10.2 Hz, 1H), 3.22~3.19 (m, 1H), 3.11~3.08 (m, 1H); 13C NMR (150 MHz, CDCl3) δ: 181.6, 140.9, 136.9, 133.1, 132.2, 128.2, 125.6, 124.8, 123.4, 122.8, 122.2, 120.0, 119.7, 119.4, 114.4, 111.6, 110.1, 53.2, 40.8.
3-Allyl-3-(5-methyl-1H-indol-3-yl)indolin-2-one (6b): 75 mg, 82% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.40 (s, 1H), 8.17 (s, 1H), 7.24 (t, J=7.2 Hz, 1H), 7.20 (d, J=8.4 Hz, 1H), 7.15 (d, J=7.2 Hz, 1H), 7.04 (d, J=2.4 Hz, 1H), 7.01 (t, J=7.2 Hz, 1H), 6.95~6.93 (m, 2H), 6.91 (s, 1H), 5.58~5.51 (m, 1H), 5.10 (d, J=17.4 Hz, 1H), 4.97 (d, J=10.2 Hz, 1H), 3.22~3.18 (m, 1H), 3.11~3.08 (m, 1H), 2.28 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 180.8, 140.9, 135.3, 133.1, 132.4, 128.9, 128.2, 125.8, 125.0, 124.0, 123.3, 122.7, 120.0, 119.3, 114.4, 111.1, 109.8, 53.1, 40.9, 21.8; HRMS (ESI) calcd for C20H18N2NaO [M+Na]+ 325.1317, found 325.1316.
3-Allyl-3-(5-methoxy-1H-indol-3-yl)indolin-2-one (6c): 80 mg, 84% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.96 (s, 1H), 8.44 (s, 1H), 7.21 (t, J=7.8 Hz, 1H), 7.17 (d, J=8.4 Hz, 1H), 7.13 (d, J=7.2 Hz, 1H), 7.06 (d, J=2.4 Hz, 1H), 7.00 (t, J=7.2 Hz, 1H), 6.90 (d, J=7.8 Hz, 1H), 6.76 (dd, J=8.4, 2.4 Hz, 1H), 6.37 (d, J=1.8 Hz, 1H), 5.59~5.52 (m, 1H), 5.10 (d, J=17.4 Hz, 1H), 4.97 (d, J=10.2 Hz, 1H), 3.56 (s, 3H), 3.20~3.16 (m, 1H), 3.09~3.06 (m, 1H); 13C NMR (150 MHz, CDCl3) δ: 181.2, 153.8, 141.1, 133.0, 132.2, 132.0, 128.3, 126.0, 125.1, 124.1, 122.8, 119.4, 114.1, 112.2, 112.1, 109.9, 102.1, 55.6, 53.1, 40.6; HRMS (ESI) calcd for C20H18N2NaO2 [M+Na]+ 341.1266, found 341.1261.
3-Allyl-3-(5-bromo-1H-indol-3-yl)indolin-2-one (6d): 78 mg, 70% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.30 (s, 1H), 7.82 (s, 1H), 7.29 (t, J=7.8 Hz, 1H), 7.24 (s, 1H), 7.19~7.18 (m, 1H), 7.17 (s, 1H), 7.16~7.14 (m, 1H), 7.11 (d, J=2.4 Hz, 1H), 7.04 (t, J=7.8 Hz, 1H), 6.98 (d, J=7.8 Hz, 1H), 5.56~5.49 (m, 1H), 5.10 (d, J=17.4 Hz, 1H), 4.99 (d, J=10.2 Hz, 1H), 3.18~3.14 (m, 1H), 3.08~3.05 (m, 1H); 13C NMR (100 MHz, C3D6O) δ:178.7, 142.3, 136.2, 133.0, 128.3, 128.2, 127.6, 125.2, 124.9, 124.3, 122.8, 122.0, 118.5, 115.0, 113.5, 111.9, 109.7, 52.5, 40.7; HRMS (ESI) calcd for C19H15BrN2NaO [M+Na]+ 389.0265., found 389.0263.
3-Allyl-5-methyl-3-(5-methyl-1H-indol-3-yl)indolin-2-one (6e): 74 mg, 78% yield, red gel. 1H NMR (600 MHz, CDCl3) δ: 8.50 (s, 1H), 8.26 (s, 1H), 7.20 (d, J=8.4 Hz, 1H), 7.04~7.02 (m, 2H), 6.94~6.93 (m, 2H), 6.90 (s, 1H), 6.83 (d, J=7.8 Hz, 1H), 5.57~5.50 (m, 1H), 5.11 (d, J=16.8 Hz, 1H), 4.97 (d, J=10.2 Hz, 1H), 3.21~3.17 (m, 1H), 3.08~3.05 (m, 1H), 2.28 (s, 3H), 2.26 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 180.9, 138.4, 135.3, 133.2, 132.4, 132.1, 128.9, 128.5, 125.9, 125.6, 123.9, 123.2, 120.0, 119.2, 114.5, 111.1, 109.5, 53.1, 40.9, 21.8, 21.3; HRMS (ESI) calcd for C21H20N2NaO [M+Na]+ 339.1468, found 339.1456.
3-Allyl-3-(5-methoxy-1H-indol-3-yl)-5-methylindolin-2-one (6f): 81 mg, 81% yield, red gel. 1H NMR (400 MHz, CDCl3) δ: 8.67 (s, 1H), 8.41 (s, 1H), 7.19 (d, J=9.2 Hz, 1H), 7.09 (d, J=2.4 Hz, 1H), 7.03~7.00 (m, 1H), 6.94 (s, 1H), 6.82 (d, J=8.0 Hz, 1H), 6.76 (dd, J=8.8, 2.4 Hz, 1H), 6.36 (d, J=2.4 Hz, 1H), 5.60~5.49 (m, 1H), 5.12 (d, J=17.2 Hz, 1H), 4.98 (d, J=10.0 Hz, 1H), 3.55 (s, 3H), 3.20~3.15 (m, 1H), 3.07~3.02 (m, 1H), 2.25 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 180.8, 153.9, 138.5, 133.0, 132.3, 132.2, 132.0, 128.6, 126.0, 125.8, 123.9, 119.3, 114.6, 112.3, 112.0, 109.4, 102.2, 55.6, 53.0, 40.7, 21.3; HRMS (ESI) calcd for C21H20N2NaO2 [M+Na]+ 355.1417, found 355.1410.
3-Allyl-3-(5-chloro-1H-indol-3-yl)-5-methylindolin-2-one (6g): 70 mg, 69% yield, red gel. 1H NMR (600 MHz, C3D6O) δ: 10.38 (s, 1H), 9.49 (s, 1H), 7.40 (s, 1H), 7.36 (d, J=9.0 Hz, 1H), 7.24 (s, 1H), 7.07 (d, J=7.8Hz, 1H), 7.02 (dd, J=9.0, 2.4Hz, 1H), 7.00 (s, 1H), 6.92 (d, J=7.8 Hz, 1H), 5.56~5.49 (m, 1H), 5.06 (d, J=17.4 Hz, 1H), 4.92 (d, J=10.2 Hz, 1H), 3.16~3.07 (m, 2H), 2.25 (s, 3H); 13C NMR (150 MHz, C3D6O) δ:179.5, 140.3, 136.3, 133.6, 133.5, 131.6, 129.0, 127.5, 125.8, 125.7, 124.7, 122.1, 120.1, 118.7, 115.8, 113.4, 109.8, 53.0, 41.1, 20.9; HRMS (ESI) calcd for C20H17ClN2NaO [M+Na]+ 359.0922, found 359.0914.
3-Allyl-3-(1H-indol-3-yl)-1, 5-dimethylindolin-2-one (6h): 70 mg, 73% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.69 (s, 1H), 7.30 (d, J=8.4 Hz, 1H), 7.13 (d, J=7.8 Hz, 1H), 7.09 (t, J=7.8 Hz, 1H), 6.98 (s, 1H), 6.94 (d, J=8.4 Hz, 1H), 6.91~6.88 (m, 2H), 6.85 (d, J=7.8 Hz, 1H), 5.49~5.42 (m, 1H), 5.09 (d, J=17.4 Hz, 1H), 4.95 (d, J=10.2 Hz, 1H), 3.29 (s, 3H), 3.16~3.13 (m, 1H), 3.06~3.03 (m, 1H), 2.28 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 178.9, 141.5, 136.9, 132.6, 132.5, 132.3, 128.5, 125.6, 125.4, 123.3, 122.0, 120.1, 119.6, 119.1, 114.8, 111.5, 107.8, 52.7, 40.8, 26.5, 21.3; HRMS (ESI) calcd for C21H20N2NaO [M+Na]+ 339.1468, found 339.1457.
3-Allyl-1-benzyl-3-(1H-indol-3-yl)-5-methylindolin-2-one (6i):83 mg, 71% yield, yellow oil. 1H NMR (400 MHz, CDCl3) δ: 8.77 (s, 1H), 7.39~7.37 (m, 2H), 7.34~7.28 (m, 4H), 7.12~7.08 (m, 1H), 7.02 (d, J=8.0 Hz, 1H), 6.98 (s, 1H), 6.95~6.94 (m, 1H), 6.86~6.85 (m, 2H), 6.75 (d, J=8.0 Hz, 1H), 5.55~5.45 (m, 1H), 5.17 (d, J=16.8 Hz, 1H), 5.07~4.93 (m, 3H), 3.28~3.22 (m, 1H), 3.12~3.07 (m, 1H), 2.24 (s, 3H); 13C NMR (150 MHz, CDCl3) δ:178.9, 140.6, 136.9, 136.2, 132.6, 132.5, 132.4, 128.9, 128.5, 127.8, 127.7, 125.6, 125.4, 123.4, 122.0, 120.3, 119.5, 119.3, 115.0, 111.5, 109.0, 52.8, 44.3, 41.0, 21.3; HRMS (ESI) calcd for C27H24N2NaO [M+Na]+ 415.1781, found 415.1770.
1, 3-Diallyl-3-(1H-indol-3-yl)-5-methylindolin-2-one (6j): 70 mg, 68% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.62 (s, 1H), 7.30 (d, J=8.4 Hz, 1H), 7.11~7.08 (m, 2H), 7.00 (s, 1H), 6.98 (d, J=7.8 Hz, 1H), 6.94 (d, J=2.4 Hz, 1H), 6.90 (t, J=7.2 Hz, 1H), 6.85 (d, J=7.8 Hz, 1H), 5.90~5.83 (m, 1H), 5.52~5.45 (m, 1H), 5.31 (d, J=17.4 Hz, 1H), 5.23 (d, J=10.2 Hz, 1H), 5.11 (d, J=16.8 Hz, 1H), 4.97 (d, J=10.2 Hz, 1H), 4.50~4.47 (m, 1H), 4.36~4.32 (m, 1H), 3.21~3.17 (m, 1H), 3.07~3.04 (m, 1H), 2.28 (s, 3H); 13C NMR (150 MHz, CDCl3) δ:178.5, 140.7, 136.9, 132.6, 132.5, 132.3, 131.9, 128.4, 125.7, 125.4, 123.4, 122.0, 120.2, 119.6, 119.3, 117.8, 115.0, 111.6, 108.8, 52.7, 42.8, 41.0, 21.3; HRMS (ESI) calcd for C23H22N2NaO [M+Na]+ 365.1624, found 365.1614.
Ethyl 3-allyl-3-(1H-indol-3-yl)-5-methyl-2-oxoindoline-1-carboxylate (6k): 75 mg, 67% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.62 (s, 1H), 7.25~7.24 (m, 1H), 7.11~7.06 (m, 3H), 6.97 (s, 1H), 6.92~6.88 (m, 2H), 6.74 (d, J=7.8 Hz, 1H), 5.56~5.49 (m, 1H), 5.08 (d, J=16.8 Hz, 1H), 4.96 (d, J=10.2 Hz, 1H), 4.55 (q, J=17.4 Hz, 2H), 3.74 (s, 3H), 3.20~3.17 (m, 1H), 3.08~3.04 (m, 1H), 2.26 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 178.8, 168.4, 140.0, 136.9, 132.8, 132.4, 128.6, 125.6, 125.6, 123.4, 122.0, 120.3, 119.5, 119.1, 114.5, 111.5, 110.8, 107.8, 52.6, 52.6, 41.5, 41.1, 21.3; HRMS (ESI) calcd for C23H22N2NaO3 [M+Na]+ 397.1523, found 397.1512.
3-Allyl-3-(p-tolyl)indolin-2-one (6l): 46 mg, 58% yield, yellow oil. 1H NMR (600 MHz, CDCl3) δ: 8.68 (s, 1H), 7.25 (d, J=2.4 Hz, 2H), 7.23 (d, J=7.8 Hz, 1H), 7.19 (d, J=7.2 Hz, 1H), 7.11 (d, J=8.4 Hz, 2H), 7.06 (t, J=7.8 Hz, 1H), 6.93 (d, J=7.8 Hz, 1H), 5.49~5.42 (m, 1H), 5.05 (d, J=17.4 Hz, 1H), 4.93 (d, J=10.2 Hz, 1H), 3.06~3.00 (m, 2H), 2.30 (s, 3H); 13C NMR (150 MHz, CDCl3) δ:180.8, 141.1, 137.3, 136.6, 132.7, 132.5, 129.5, 128.2, 127.0, 125.4, 122.6, 119.4, 110.1, 56.8, 41.7, 21.1; HRMS (ESI) calcd for C18H17NNaO [M+Na]+ 286.1208, found 286.1205.
3-Allyl-3-(3, 4-dimethoxyphenyl)indolin-2-one (6m): 79 mg, 85% yield, white oil. 1H NMR (600 MHz, CDCl3) δ: 8.91 (s, 1H), 7.26~7.21 (m, 2H), 7.07 (t, J=7.8 Hz, 1H), 6.97 (d, J=1.8 Hz, 1H), 6.94 (d, J=7.8 Hz, 1H), 6.89 (dd, J=2.4 Hz, 1H), 6.79 (d, J=8.4 Hz, 1H), 5.49~5.43 (m, 1H), 5.06 (d, J=16.8 Hz, 1H), 4.94 (d, J=10.2 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.05~2.98 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 180.8, 149.0, 148.5, 141.1, 132.5, 131.9, 129.0, 128.3, 125.4, 122.5, 119.5, 119.4, 111.1, 110.7, 110.2, 56.6, 56.0, 55.9, 42.1; HRMS (ESI) calcd for C19H19NNaO3 [M+Na]+ 332.1257, found 332.1254.
3-Allyl-3-(3-methoxy-4-methylphenyl)indolin-2-one(6n):66 mg, 75% yield, white oil. 1H NMR (600 MHz, CDCl3) δ: 8.46 (s, 1H), 7.23 (t, J=8.4 Hz, 2H), 7.09~7.04 (m, 2H), 6.93 (d, J=7.8 Hz, 1H), 6.90 (d, J=1.8 Hz, 1H) 6.84~6.82 (m, 1H), 5.51~5.44 (m, 1H), 5.08~5.05 (m, 1H), 4.96~4.94 (m, 1H), 3.77 (s, 3H), 3.07~3.00 (m, 2H), 2.17 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 180.5, 157.9, 141.0, 138.2, 132.5, 132.4, 130.5, 128.1, 126.0, 125.3, 122.4, 119.2, 118.9, 110.1, 108.9, 57.0, 55.3, 41.8, 15.8; HRMS (ESI) calcd for C19H19NNaO2 [M+Na]+ 316.1308, found 316.1301.
3-Allyl-3-(3, 4-dimethylphenyl)indolin-2-one (6o): 54 mg, 65% yield, white oil. 1H NMR (600 MHz, CDCl3) δ: 9.00 (s, 1H), 7.07 (t, J=7.8, 1.2 Hz, 1H), 7.19 (d, J=6.6 Hz, 1H), 7.14 (s, 1H), 7.09~7.05 (m, 3H), 6.94 (d, J=7.8 Hz, 1H), 5.51~5.44 (m, 1H), 5.08~5.05 (m, 1H), 4.95~4.93 (m, 1H), 3.09~3.01 (m, 2H); 2.23~2.22 (m, 6H); 13C NMR (150 MHz, CDCl3) δ: 181.1, 141.2, 137.0, 136.9, 136.0, 132.9, 132.5, 130.0, 128.3, 128.1, 125.3, 124.5, 122.5, 119.3, 110.2, 56.8, 41.6, 20.1, 19.5; HRMS (ESI) calcd for C19H20NO [M+H]+ 278.1539, found 278.1532.
But-3-ene-1, 1-diyldibenzene (8b):[11] 30 mg, 48 % yield, yellow oil. 1H NMR (400 MHz, CDCl3) δ: 7.39~7.32 (m, 8H), 7.28~7.24 (m, 2H), 5.87~5.77 (m, 1H), 5.13 (d, J=17.2 Hz, 1H), 5.05 (d, J=10.4 Hz, 1H), 4.11 (t, J=8.0 Hz, 1H), 2.94~2.90 (m, 2H); 13C NMR (150 MHz, CDCl3) δ: 144.6, 137.0, 128.5, 128.1, 126.3, 116.4, 51.4, 40.1.
Supporting Information Copies of 1H NMR, 13C NMR, 19F NMR spectra and the HRMS data of compounds 3, 4a, 6 and 8b. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.
-
-
[1]
(a) Roy, U. K.; Roy, S. Chem. Rev. 2010, 110, 2472.
(b) Zha, Z.; Hui, A.; Zhou, Y.; Miao, Q.; Wang, Z.; Zhang, H. Org. Lett. 2005, 7, 1903.
(c) Crich, D.; Grant, D.; Krishnamurthy, V.; Patel, M. Acc. Chem. Res. 2007, 40, 453.
(d) Davies, A. G.; Gielen, M.; Pannell, K. H.; Tiekink, E. R. T. Tin chemistry: Fundamentals, Frontiers, and Applications; John Wiley & Sons, Chichester, U.K., 2008. -
[2]
(a) Hoch, M. Appl. Geochem. 2001, 16, 719.
(b) Amouroux, D.; Tessier, E.; Donard, O. F. X. Environ. Sci. Technol. 2000, 34, 988.
(c) Lukevics, E.; Pudova, O. Biological Activity of Organotin and Organolead Compounds. In the Chemistry of Organic Germanium, Tin and Lead Compounds, Vol. 2, Ed.: Rappoport, Z., John Wiley and Sons, Chichester, 2002, p. 1685.
(d) Barnes, J. M.; Stoner, H. B. Pharmacol. Rev. 1959, 11, 211. -
[3]
(a) Solin, N.; Kjellgren, J.; Szabó, K. J. J. Am. Chem. Soc. 2004, 126, 7026.
(b) Teo, Y.-C.; Goh, J.-D.; Loh, T.-P. Org. Lett. 2005, 7, 2743.
(c) Suzuki, T.; Atsumi, J.-I.; Sengoku, T.; Takahashi, M.; Yoda, H. J. Organomet. Chem. 2010, 695, 128.
(d) Deng, D.; Liu, P.; Ji, B.; Wang, L.; Fu, W. Tetrahedron Lett. 2010, 51, 5567.
(e) Cormier, M.; Ahmad, M.; Maddaluno, J.; Paolis, M. D. Organometallics 2017, 36, 4920.
(f) Mahajani, N. S.; Chisholm, J. D. Org. Biomol. Chem. 2018, 16, 4008. -
[4]
Mukaiyama, T.; Harada, T. Chem. Lett. 1981, 10, 1527. doi: 10.1246/cl.1981.1527
-
[5]
(a) Elaas, N. A.; Elaas, W. A.; Huang, D.; Hu, Y.; Wang, K.-H. Curr. Org. Synth. 2017, 14, 1156.
(b) Tan, K.-T.; Chng, S.-S.; Cheng, H.-S.; Loh, T.-P. J. Am. Chem. Soc. 2003, 125, 2958.
(c) Alcaide, B.; Almendros, P.; Rodríguez-Acebes, R. J. Org. Chem. 2005, 70, 2713.
(d) Appelt, H. R.; Limberger, J. B.; Weber, M.; Rodrigues, O. E. D.; Oliveira, J. S.; Lüdtke, D. S.; Braga, A. L. Tetrahedron Lett. 2008, 49, 4956.
(e) Thorat, P. B.; Goswami, S. V.; Bhusare, S. R. Tetrahedron: Asymmetry 2013, 24, 1324.
(f) Wang, Z.; Zha, Z.; Zhou, C. Org. Lett. 2002, 4, 1683.
(g) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Rodríguez-Acebes, R. J. Org. Chem. 2001, 66, 5208.
(h) Estevam, I. H. S.; Bieber, L. W. Tetrahedron Lett. 2003, 44, 667 -
[6]
(a) Lin, M.-H.; Lin, L.-Z.; Chuang, T.-H.; Liu, H.-J. Tetrahedron 2012, 68, 2630.
(b) Lin, M.-H.; Hung, S.-F.; Lin, L.-Z.; Tsai, W.-S.; Chuang, T.-H. Org. Lett. 2011, 13, 332.
(c) Lin, M.-H.; Lin, W.-C.; Liu, H.-J.; Chuang, T.-H. J. Org. Chem. 2013, 78, 1278. -
[7]
Liao, P.-H.; Bao, W.-L.; Zhang, Y.-M. Synth. Chem. 1997, 5, 374.
-
[8]
(a) Li, J.; Lv, W.; Huang, D.; Wang, K.-H.; Niu, T.; Su, Y.; Hu, Y. Appl. Organometal. Chem. 2014, 28, 286.
(b) Xu, Y.; Huang, D.; Wang, K.-H.; Ma, J.; Su, Y.; Fu, Y.; Hu, Y. J. Org. Chem. 2015, 80, 12224.
(c) Du, G.; Huang, D.; Wang, K.-H.; Chen, X.; Xu, Y.; Ma, J.; Su, Y.; Fu, Y.; Hu, Y. Org. Biomol. Chem. 2016, 14, 1492.
(d) Wang, J.; Huang, D.; Wang, K.-H.; Peng, X.; Su, Y.; Hu, Y.; Fu, Y. Org. Biomol. Chem. 2016, 14, 9533.
(e) Lu, A.; Huang, D.; Wang, K.-H.; Su, Y.; Ma, J.; Xu, Y.; Hu, Y. Synthesis 2016, 48, 293.
(f) Ma, J.; Huang, D.; Wang, K.-H.; Xu, Y.; Chong, S.; Su, Y.; Fu, Y.; Hu, Y. Appl. Organometal. Chem. 2016, 30, 571.
(g) Peng, X.; Wang, K.-H.; Huang, D.; Wang, J.; Wang, Y.; Su, Y.; Hu, Y.; Fu, Y. Appl. Organomet. Chem. 2017, 15, 6214.
(h) Li, J.; Yang, T.; Zhang, H.; Huang, D.; Wang, K.-H.; Su, Y.; Hu, Y. Chin. J. Org. Chem. 2017, 37, 925(in Chinese).
(李军, 杨天宇, 张怀远, 黄丹凤, 王克虎, 苏瀛鹏, 胡雨来, 有机化学, 2017, 37, 925.)
(i) Li, J.; Huang, D.; Zhang, H.; Zhang, X.; Wang, J.; Wang, K.-H.; Su, Y.; Hu, Y. Chin. J. Org. Chem. 2017, 37, 2985(in Chinese).
(李军, 黄丹凤, 张怀远, 张兴虎, 王娟娟, 王克虎, 苏瀛鹏, 胡雨来, 有机化学, 2017, 37, 2985.)
(j) Yang, Z.; Huang, D.; Wen, L.; Wang, J.; Wang, K.; Hu, Y. Chin. J. Org. Chem. 2018, 38, 1725(in Chinese).
(杨政, 黄丹凤, 文岚, 王娟娟, 王克虎, 胡雨来, 有机化学, 2018, 38, 1725.)
(k) Liu, J.; Huang, D.; Wang, X.; Zong, W.; Su, Y.; Wang, K.; Hu, Y. Chin. J. Org. Chem. 2019, 39, 1767(in Chinese).
(刘佳欣, 黄丹凤, 王小平, 宗吴中, 苏瀛鹏, 王克虎, 胡雨来, 有机化学, 2019, 39, 1767.)
(l) Wang, X.; Huang, D.; Wang, K.-H.; Su, Y.; Hu, Y. J. Org. Chem. 2019, 84, 6946.
(m) Wang, X.; Huang, D.; Wang, K-H.; Liu, J.; Zong, W.; Wang, J.; Su, Y.; Hu, Y. Appl. Organomet. Chem. 2019, 33, e4995. -
[9]
(a) Naredla, R. R.; Klumpp, D. A. Chem. Rev. 2013, 113, 6905.
(b) Nokami, T.; Yamane, Y.; Oshitani, S.; Kobayashi, J.-K, Matsui, S.-i.; Nishihara, T.; Uno, H.; Hayase, S.; Itoh, T. Org. Lett. 2015, 17, 3182.
(c) Flagstad, T.; Petersen, M. T.; Nielsen, T. E. Angew. Chem., Int. Ed. 2015, 54, 8395.
(d) Xiao, M.; Ren, D, Xu, L.; Li, S.-S.; Yu, L.; Xiao, J. Org. Lett. 2017, 19, 5724.
(e) Hikawa, H.; Kotaki, F.; Kikkawa, S.; Azumaya, I. J. Org. Chem. 2019, 84, 1972.
(f) Yu, H.; Lee, R.; Kim, H.; Lee, D. J. Org. Chem. 2019, 84, 3566.
(g) Mayer, R. J.; Breugst, M.; Hampel, N.; Ofial, A. R.; Mayr, H. J. Org. Chem. 2019, 84, 8837.
(h) Kinthada, L. K.; Medisetty, S. R.; Parida, A.; Babu, K. N.; Bisai, A. J. Org. Chem. 2017, 82, 8548. -
[10]
Chan, T. H.; Yang, Y.; Li, C. J. J. Org. Chem. 1999, 64, 4452. doi: 10.1021/jo9901337
-
[11]
Lebleu, T.; Paquin, J-F. Tetrahedron Lett. 2017, 58, 442. doi: 10.1016/j.tetlet.2016.12.056
-
[1]
-
表 1 Optimization of the reaction conditionsa
Entry Molar ratio of
1:2:SnSolvent Acidb Yieldc/% 3a 4a 1 1.0:3.0:3.5 DCM BiCl3 47 20 2 1.0:3.0:3.5 DCM FeCl3 0 0 3 1.0:3.0:3.5 DCM Fe(OTf)3 47 3 4 1.0:3.0:3.5 DCM InCl3 25 1 5 1.0:3.0:3.5 DCM In(OTf)3 33 2 6 1.0:3.0:3.5 DCM Ni(ClO4)2•6H2O Trace 0 7 1.0:3.0:3.5 DCM NiCl2•6H2O Trace 0 8 1.0:3.0:3.5 DCM Ni(OTf)2 6 1 9 1.0:3.0:3.5 DCM Mg(ClO4)2 19 0 10 1.0:3.0:3.5 DCM BF3•OEt2 5 Trace 11 1.0:3.0:3.5 DCM Sc(OTf)3 13 1 12 1.0:3.0:3.5 DCM Cu(OTf)2 47 4 13 1.0:3.0:3.5 DCM Yb(OTf)3 25 2 14 1.0:3.0:3.5 DCM TfOH 38 1 15 1.0:3.0:3.5 DCM H2SO4 40 2 16 1.0:3.0:3.5 DCM H3PO4 38 3 17 1.0:3.0:3.5 DCM HNO3 29 4 18 1.0:3.0:3.5 DCM HCl 35 3 19 1.0:3.0:3.5 DCM HClO4 46 1 20 1.0:3.0:3.5 DCM HClO4 58 0 21 1.0:4.0:4.5 DCM HClO4 87 0 22 1.0:5.0:5.5 DCM HClO4 82 0 23 1.0:4.0:4.5 DCE HClO4 65 0 24 1.0:4.0:4.5 CH3CN HClO4 54 3 25 1.0:4.0:4.5 THF HClO4 69 0 26 1.0:4.0:4.5 1, 4-Dioxane HClO4 85 0 27 1.0:4.0:4.5 CH3OH HClO4 Trace 0 28 1.0:4.0:4.5 CH3CH2OH HClO4 Trace 0 a All reactions were carried out by using 0.3 mmol of 1a, 0.9~1.2 mmol of 2, 1.05~1.35 mmol of tin powder, 0.03~0.3 mmol of acid in 4 mL of solvent at room temperature for 10 h; bAcid: Entries 1~19, 10 mol%; Entries 20~28, 100 mol%; c Isolated yields. 表 2 Substrate scope of allylations using 3-hydroxy-2-oxindoles 1a
表 3 Substrate scope of allylations using 3-hydroxy-2-oxindoles 5a
-

计量
- PDF下载量: 7
- 文章访问数: 1181
- HTML全文浏览量: 109