UV Photodegradation of Polypropylene Thick Bars Containing Rutile-type TiO2 Nanorods

Lin Qi Yan-fen Ding Quan-xiao Dong Bin Wen Peng Liu Feng Wang Shi-min Zhang Ming-shu Yang

Citation:  Lin Qi, Yan-fen Ding, Quan-xiao Dong, Bin Wen, Peng Liu, Feng Wang, Shi-min Zhang, Ming-shu Yang. UV Photodegradation of Polypropylene Thick Bars Containing Rutile-type TiO2 Nanorods[J]. Chinese Journal of Polymer Science, 2014, 32(7): 834-843. doi: 10.1007/s10118-014-1472-3 shu

UV Photodegradation of Polypropylene Thick Bars Containing Rutile-type TiO2 Nanorods

    通讯作者: Ming-shu Yang,
  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (No. 51133009), the National Basic Research Program of China (No. 2012CB720304) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09030200).

摘要: Surface modified rutile-type titanium dioxide (CST) nanorods were used as a UV absorber in polypropylene (PP) thick bars in combination with the hindered amine light stabilizer (HALS) Chimassorb 944 (C944). For all of the tested samples, the photodegradation was mainly limited in the region near the exposed surface, as proved by the carbonyl index and molecular weight. Compared with the typical HALS photostabilization system containing organic hindered phenol UV absorber Tinuvin 328 (T328), the thickness of photodegradation region for PP/C944/CST was only a quarter to that for PP/C944 and PP/C944/T328, while the rates of reduction in molecular weight and increase in carbonyl index were much lower. Optical microscopic observation showed that the evolution of surface micro-cracks in PP/C944/CST was quite different from that in the other samples, while scanning electronic micrographs revealed that the depth of the micro-cracks in PP/C944/CST was much shorter than that in the others. It is therefore concluded that the protection of CST on PP thick bars is mainly attributed to the outstanding UV-shielding and cracks-blocking abilities.

English


    1. [1]

      Tripathi, D., Practical Guide to Polypropylene, by Rapra Technology Limited, UK, 2002, p. 2

    2. [2]

      Ojeda, T., Freitas, A., Birck, K., Dalmolin, E., Jacques, R., Bento, F. and Camargo, F., Polym. Degrad. Stab., 2011, 96: 703

    3. [3]

      Basfar, A.A., Ali, K.M.I., Vaidya, M.M., Bahamdan, A.A. and Alam, M.A., Polym-Plast. Technol., 2010, 49: 841

    4. [4]

      White, J.R. and Turnbull, A., J. Mater. Sci., 1994, 29: 584

    5. [5]

      Pospil, J. and Nepurek, S., Prog. Polym. Sci., 2000, 25: 1261

    6. [6]

      Parejo, P.G., Zayat, M. and Levy, D., J. Mater. Chem., 2006, 16: 2165

    7. [7]

      Kumar, A.P., Depan, D., Singh Tomer, N. and Singh, R.P., Prog. Polym. Sci., 2009, 34: 479

    8. [8]

      Wen, B., Wang, F., Xu, X.F., Ding, Y.F., Zhang, S.M. and Yang, M.S., Polym-Plast. Technol., 2011, 50: 1375

    9. [9]

      Li, Y., Yang, Y. and Fu, S., Compos. Sci. Technol., 2007, 67: 3465

    10. [10]

      Aloui, F., Ahajji, A., Irmouli, Y., George, B., Charrier, B. and Merlin, A., Appl. Surf. Sci., 2007, 253: 3737

    11. [11]

      Allen, N.S., Edge, M., Ortega, A., Sandoval, G., Liauw, C.M., Verran, J., Stratton, J. and McIntyre, R.B., Polym. Degrad. Stab., 2004, 85: 927

    12. [12]

      Furneaux, G.C., Ledbury, K.J. and Davis, A., Polym. Degrad. Stab., 1981, 3: 431

    13. [13]

      Cunliffe, A.V. and Davis, A., Polym. Degrad. Stab., 1982, 4: 17

    14. [14]

      Schoolenberg, G.E. and Vink, P., Polymer, 1991, 32: 432

    15. [15]

      Tavares, A.C., Gulmine, J.V., Lepienski, C.M. and Akcelrud, L., Polym. Degrad. Stab., 2003, 81: 367

    16. [16]

      Turton, T.J. and White, J.R., Polym. Degrad. Stab., 2001, 74: 559

    17. [17]

      White, J.R. and Shyichuk, A.V., Polym. Degrad. Stab., 2007, 92: 2095

    18. [18]

      Cao, H., Yuan, J.P., Zhang, R., Huang, C.M., He, Y., Sandreczki, T.C., Jean, Y.C., Nielsen, B., Suzuki, R. and Ohdaira, T., Macromolecules, 1999, 32: 5925

    19. [19]

      Zhang, R., Chen, H., Cao, H., Huang, C.M., Mallon, P.E., Li, Y., He, Y., Sandreczki, T.C., Jean, Y.C., Suzuki, R. and Ohdaira, T., J. Polym. Sci. Part B: Polym. Phys., 2001, 39: 2035

    20. [20]

      Schoolenberg, G.E., J. Mater. Sci., 1988, 23: 1580

    21. [21]

      Zhao, H. and Li, R.K.Y., Polymer, 2006, 47: 3207

    22. [22]

      Geburtig, A. and Wachtendorf, V., Polym. Degrad. Stab., 2010, 95: 2118

    23. [23]

      Schoolenberg, G.E. and Meijer, H.D.F., Polymer, 1991, 32: 438

    24. [24]

      Calvo, M.E., Castro Smirnov, J.R. and Mguez, H., J. Polym. Sci. Part B: Polym. Phys., 2012, 50: 945

    25. [25]

      Paul, D.R. and Robeson, L.M., Polymer 2008, 49: 3187

    26. [26]

      Qi, L., Ding, Y.F., Dong, Q.X., Wen, B., Wang, F., Zhang, S.M. and Yang, M.S., J. Appl. Polym. Sci., DOI: 10.1002/app.40601

    27. [27]

      Brandrup, J. and Immergut, E.H., Polymer handbook, Part V, 3rd, ed., Wiley, New York, 1989, p. 27

    28. [28]

      Cornelius, C.J., Physical and gas permeation properties of a series of novel hybrid inorganic-organic composites based on a synthesized fluorinated polyimide. PhD Thesis, Virginia Polytechnic Institute and State University, USA, 2000

    29. [29]

      Rabello, M.S. and White, J.R. Polym. Degrad. Stab., 1997, 56: 55

    30. [30]

      Mirzadeh, A. and Kokabi, M., Eur. Polym. J., 2007, 43: 3757

    31. [31]

      Asmatulu, R., Mahmud, G.A., Hille, C. and Misak, H.E., Prog. Org. Coat., 2011, 72: 553

    32. [32]

      Pan, Y., Xu, Y., An, L., Lu, H., Yang, Y., Chen, W. and Nutt, S., Macromolecules, 2008, 41: 9245

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  911
  • HTML全文浏览量:  51
文章相关
  • 发布日期:  2014-07-05
  • 收稿日期:  2014-03-31
  • 修回日期:  2014-04-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章