Synthesis of Calcium Hexaluminate from Waste Slag of Aluminum and Oyster Shell

ZHUANG Guo-Xin HE Ya-Jun MALCOLM Clark YU Yan

Citation:  ZHUANG Guo-Xin, HE Ya-Jun, MALCOLM Clark, YU Yan. Synthesis of Calcium Hexaluminate from Waste Slag of Aluminum and Oyster Shell[J]. Chinese Journal of Structural Chemistry, 2016, 35(1): 157-165. doi: 10.14102/j.cnki.0254-5861.2011-0813 shu

Synthesis of Calcium Hexaluminate from Waste Slag of Aluminum and Oyster Shell

摘要: Waste aluminum slag and oyster shell were used as raw materials to synthesize calcium hexaluminate (CA6). The effects of different source materials of CaO and sintering temperature on the structures and properties of CA6 were investigated, respectively. The results show that compared to calcium oxide, oyster shell can lower the formation temperature of CA6, hence CA6 can be detected at 1300 ℃ by using oyster shell as the starting raw materials. Increasing the sintering temperature can promote the crystal growth. CA6 crystals show typical platelet shape, and its optimum sintering temperature falls in the 1450~1550 ℃ region. The bulk density is 1.54~1.83 g/cm3, the apparent porosity is 44.1~55.2% and the flexural strength is 10.8~25.3 MPa.

English

  • 
    1. [1]

      (1) Tulliani, J. M.; Pagès, G.; Fantozzi, G.; Montanaro1, L. Dilatometry as a tool to study a new synthesis for calcium hex aluminate. J. Therm. Anal. Calorim. 2003, 3, 1135-1140.(1) Tulliani, J. M.; Pagès, G.; Fantozzi, G.; Montanaro1, L. Dilatometry as a tool to study a new synthesis for calcium hex aluminate. J. Therm. Anal. Calorim. 2003, 3, 1135-1140.

    2. [2]

      (2) Domínguez, C.; Chevalier, J.; Torrecillas, R.; Fantozzi, G. Microstructure development in calcium hexaluminate. J. Eur. Ceram. Soc. 2001, 3, 381-387.(2) Domínguez, C.; Chevalier, J.; Torrecillas, R.; Fantozzi, G. Microstructure development in calcium hexaluminate. J. Eur. Ceram. Soc. 2001, 3, 381-387.

    3. [3]

      (3) De La Iglesia, P. G.; García-Moreno, O.; Torrecillas, R.; Menéndez, J. L. Influence of different parameters on calcium hexaluminate reaction sintering by Spark Plasma. Ceram. Int. 2012, 7, 5325-5332.(3) De La Iglesia, P. G.; García-Moreno, O.; Torrecillas, R.; Menéndez, J. L. Influence of different parameters on calcium hexaluminate reaction sintering by Spark Plasma. Ceram. Int. 2012, 7, 5325-5332.

    4. [4]

      (4) Kwon, H. B.; Lee, C. W.; Jun, B. S.; Weon, S. Y.; Koopman, B. Recycling waste oyster shells for eutrophication control. Resour. Conserv. Recy. 2004, l, 75-82.(4) Kwon, H. B.; Lee, C. W.; Jun, B. S.; Weon, S. Y.; Koopman, B. Recycling waste oyster shells for eutrophication control. Resour. Conserv. Recy. 2004, l, 75-82.

    5. [5]

      (5) Mallamaci, M. P.; Sartain, K. B.; Carter, C. B. Crystallization of calcium hexaluminate on basal alumina. Philos. Mag. 1998, 3, 561-575.(5) Mallamaci, M. P.; Sartain, K. B.; Carter, C. B. Crystallization of calcium hexaluminate on basal alumina. Philos. Mag. 1998, 3, 561-575.

    6. [6]

      (6) Nurse, R. W.; Welch, J. H.; Majumdar, A. J. The CaO-Al2O3 system in a moisture-free atmosphere. Brit. Ceram. Soc. Trans. 1965, 9, 409-418.(6) Nurse, R. W.; Welch, J. H.; Majumdar, A. J. The CaO-Al2O3 system in a moisture-free atmosphere. Brit. Ceram. Soc. Trans. 1965, 9, 409-418.

    7. [7]

      (7) An, L.; Chan, H. M.; Soni, K. K. Control of calcium hexaluminate grain morphology in in-situ toughened ceramic composites. J. Mal. Science 1996, 12, 3233-3229.(7) An, L.; Chan, H. M.; Soni, K. K. Control of calcium hexaluminate grain morphology in in-situ toughened ceramic composites. J. Mal. Science 1996, 12, 3233-3229.

    8. [8]

      (8) Asmi, D.; Low, I. M. Physical and mechanical characteristics of in-situ alumina/calcium hexaluminate composites. J. Mater. Sci. Lett. 1998, 20, 1735-1738.(8) Asmi, D.; Low, I. M. Physical and mechanical characteristics of in-situ alumina/calcium hexaluminate composites. J. Mater. Sci. Lett. 1998, 20, 1735-1738.

    9. [9]

      (9) Mendoza, J. L.; Freese, A.; Moore, R. E. Themonmechanical Behavior of Calcium Aluminate Composites. In Ceramic Transactions Vol. 4, Advances in Refractories Technology, ed. R. E. Fisher. American Ceramic Society, Westerville, OH 1989, 294-31.(9) Mendoza, J. L.; Freese, A.; Moore, R. E. Themonmechanical Behavior of Calcium Aluminate Composites. In Ceramic Transactions Vol. 4, Advances in Refractories Technology, ed. R. E. Fisher. American Ceramic Society, Westerville, OH 1989, 294-31.

    10. [10]

      (10) An, L.; Chan, H. M.; Padture, N. P.; Lawn, B. R. Damage resistant alumina-based layer composites. J. Mater. Res. 1996, 1, 204-210.(10) An, L.; Chan, H. M.; Padture, N. P.; Lawn, B. R. Damage resistant alumina-based layer composites. J. Mater. Res. 1996, 1, 204-210.

    11. [11]

      (11) An, L.; Chan, H. M. R-Curve behavior of in-situ-toughened Al2O3:CaAl12O19 ceramic composites. J. Am. Ceram. Soc. 1996, 12, 3142-3148.(11) An, L.; Chan, H. M. R-Curve behavior of in-situ-toughened Al2O3:CaAl12O19 ceramic composites. J. Am. Ceram. Soc. 1996, 12, 3142-3148.

    12. [12]

      (12) Criado, E.; Caballero, A.; Pena, P. Microstructural and Mechanical Properties of Alumina-calcium Hexaluminate Composites. In High Tech Ceramics, ed. P. Vicenzini Elsevier Science publishers, Amsterdam 1986, 2279-2289.(12) Criado, E.; Caballero, A.; Pena, P. Microstructural and Mechanical Properties of Alumina-calcium Hexaluminate Composites. In High Tech Ceramics, ed. P. Vicenzini Elsevier Science publishers, Amsterdam 1986, 2279-2289.

    13. [13]

      (13) Van Garsel, D.; Gnauck, V.; Kriechbaum, G. W.; Stinneben, I. New insulating raw material for high temperature applications. Refractories Engineer 1999, 29-35.(13) Van Garsel, D.; Gnauck, V.; Kriechbaum, G. W.; Stinneben, I. New insulating raw material for high temperature applications. Refractories Engineer 1999, 29-35.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1114
  • HTML全文浏览量:  36
文章相关
  • 收稿日期:  2015-05-19
  • 网络出版日期:  2015-11-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章