Spectral, Thermal and Structural Studies of Two 3D Coordination Polymers Based on Tetracarboxylic Ligand

LIANG Li-Li XU Lei LI Pei CHEN Fei-Jian XUE Hong-Bao

Citation:  LIANG Li-Li, XU Lei, LI Pei, CHEN Fei-Jian, XUE Hong-Bao. Spectral, Thermal and Structural Studies of Two 3D Coordination Polymers Based on Tetracarboxylic Ligand[J]. Chinese Journal of Structural Chemistry, 2016, 35(1): 85-92. doi: 10.14102/j.cnki.0254-5861.2011-0800 shu

Spectral, Thermal and Structural Studies of Two 3D Coordination Polymers Based on Tetracarboxylic Ligand

  • 基金项目:

    This work was supported by Natural Science Foundation of Anhui Provence (1308085QB24)  (1308085QB24)

    Anhui Province College Excellent Young Talents Foundation (No. 2013SQRL051ZD) (No. 2013SQRL051ZD)

摘要: Two new coordination polymers, [M6L3(DMA)3(H2O)] (M = Zn for 1, Cu for 2, L = tetrakis[3-(carboxyphenyl)oxamethyl]methane acid, DMA = N,N-dimethylacetamide) have been solvothermally synthesized. Single-crystal X-ray diffraction analysis reveals that compounds 1 and 2 are isostructural and crystallize in the trigonal space group R3. The asymmetrical unit contains two metal ions, one L4- ligand and two coordinated DMA molecules. The metal ions are connected through six aromatic rings into a linear trimetallic zinc building unit. The whole structure is connected through tetrehedral ligand and the trimetallic building units to form a 4,6-connected framework of the toc topology. Compounds 1 and 2 are further studied by IR spectroscopy, thermogravimetric analyses and PXRD. The solid-state UV-Vis and photoluminescent properties of compounds 1 are also investigated.

English

  • 
    1. [1]

      (1) Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196-1231.(1) Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196-1231.

    2. [2]

      (2) Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011-6061.(2) Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011-6061.

    3. [3]

      (3) Dhakshinamoorthy, A.; Garcia, H. Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev. 2014, 43, 5750-5765.(3) Dhakshinamoorthy, A.; Garcia, H. Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev. 2014, 43, 5750-5765.

    4. [4]

      (4) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352.(4) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352.

    5. [5]

      (5) Rieter, W. J.; Taylor, K. M. L.; Lin, W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc. 2007, 129, 9852-9853.(5) Rieter, W. J.; Taylor, K. M. L.; Lin, W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc. 2007, 129, 9852-9853.

    6. [6]

      (6) Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 2006, 45, 5974-5978.(6) Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 2006, 45, 5974-5978.

    7. [7]

      (7) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref. R. Porous metal-organic framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172-178.(7) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref. R. Porous metal-organic framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172-178.

    8. [8]

      (8) Sun, C. Y.; Qin, C.; Wang, C. G.; Su, Z. M.; Wang, S.; Wang, X. L.; Yang, G. S.; Shao, K. Z.; Lan, Y. Q.; Wang, E. B. Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv. Mater. 2011, 23, 5629-5632.(8) Sun, C. Y.; Qin, C.; Wang, C. G.; Su, Z. M.; Wang, S.; Wang, X. L.; Yang, G. S.; Shao, K. Z.; Lan, Y. Q.; Wang, E. B. Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv. Mater. 2011, 23, 5629-5632.

    9. [9]

      (9) Rocca, J. D.; Liu, D.; Lin, W. B. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Accounts of Chemical Research 2011, 44, 957-968.(9) Rocca, J. D.; Liu, D.; Lin, W. B. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Accounts of Chemical Research 2011, 44, 957-968.

    10. [10]

      (10) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Duyne, R. P. V.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105-1125.(10) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Duyne, R. P. V.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105-1125.

    11. [11]

      (11) DeCoste, J. B.; Peterson, G. W. Metal-organic frameworks for air purification of toxic chemicals. Chem. Rev. 2014, 114, 5695-5727.(11) DeCoste, J. B.; Peterson, G. W. Metal-organic frameworks for air purification of toxic chemicals. Chem. Rev. 2014, 114, 5695-5727.

    12. [12]

      (12) Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815-5840.(12) Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815-5840.

    13. [13]

      (13) Liang, L.; Ge, G.; Tao, Z.; Zhang, L. Synthesis and crystal structure of a new complex constructed from a flexible tetrapyridyl ligand. Chin. J. Struct. Chem. 2012, 31, 1757-1761.(13) Liang, L.; Ge, G.; Tao, Z.; Zhang, L. Synthesis and crystal structure of a new complex constructed from a flexible tetrapyridyl ligand. Chin. J. Struct. Chem. 2012, 31, 1757-1761.

    14. [14]

      (14) Liang, L.; Ren, S.; Zhang, J.; Li, Y.; Du, H.; You, X. Two thermostable 3D homochiral metal-organic polymers with quartz topology. Cryst. Growth Des. 2010, 10, 1307-1311.(14) Liang, L.; Ren, S.; Zhang, J.; Li, Y.; Du, H.; You, X. Two thermostable 3D homochiral metal-organic polymers with quartz topology. Cryst. Growth Des. 2010, 10, 1307-1311.

    15. [15]

      (15) Lu, Z.; Xing, H.; Sun, R.; Bai, J.; Zheng, B.; Li, Y. Water stable metal-organic framework evolutionally formed from a flexible multidentate ligand with acylamide groups for selective CO2 adsorption. Cryst. Growth Des. 2012, 12, 1081-1084.(15) Lu, Z.; Xing, H.; Sun, R.; Bai, J.; Zheng, B.; Li, Y. Water stable metal-organic framework evolutionally formed from a flexible multidentate ligand with acylamide groups for selective CO2 adsorption. Cryst. Growth Des. 2012, 12, 1081-1084.

    16. [16]

      (16) Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R. A. Flexible metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 6062-6096.(16) Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R. A. Flexible metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 6062-6096.

    17. [17]

      (17) Liang, L.; Zhang, J.; Ren, S.; Ge, G.; Li, Y.; Du, H.; You, X. Rational synthesis of a microporous metal-organic framework with PtS topology using a semi-rigid tetrahedral linker. CrystEngComm. 2010, 12, 2008-2010.(17) Liang, L.; Zhang, J.; Ren, S.; Ge, G.; Li, Y.; Du, H.; You, X. Rational synthesis of a microporous metal-organic framework with PtS topology using a semi-rigid tetrahedral linker. CrystEngComm. 2010, 12, 2008-2010.

    18. [18]

      (18) Liang, L.; Ren, S.; Zhang, J.; Li, Y.; Du, H.; You, X. Two unprecedented NLO-active coordination polymers constructed by a semi-rigid tetrahedral linker. Dalton Trans. 2010, 39, 7723-7726.(18) Liang, L.; Ren, S.; Zhang, J.; Li, Y.; Du, H.; You, X. Two unprecedented NLO-active coordination polymers constructed by a semi-rigid tetrahedral linker. Dalton Trans. 2010, 39, 7723-7726.

    19. [19]

      (19) Liang, L.; Ren, S.; Zhang, J.; Wang, J.; Li, Y.; Du, H.; You, X. A 3-dimensional coordination polymer with a fluorite structure constructed from a semi-rigid tetrahedral ligand. CrystEngComm. 2010, 12, 2669-2771.(19) Liang, L.; Ren, S.; Zhang, J.; Wang, J.; Li, Y.; Du, H.; You, X. A 3-dimensional coordination polymer with a fluorite structure constructed from a semi-rigid tetrahedral ligand. CrystEngComm. 2010, 12, 2669-2771.

    20. [20]

      (20) Yuan, W.; Li, H.; Guo, Z.; Cao, R. A cadmium coordination polymer with anatase topology constructed from a tetrapodal ligand: synthesis, crystal structures and luminescence. Inorg. Chem. Commun. 2011, 14, 366-369.(20) Yuan, W.; Li, H.; Guo, Z.; Cao, R. A cadmium coordination polymer with anatase topology constructed from a tetrapodal ligand: synthesis, crystal structures and luminescence. Inorg. Chem. Commun. 2011, 14, 366-369.

    21. [21]

      (21) Cao, C.; Wei, T. B.; Zhang, Q. S.; Lu, Y. Y.; Zhang, Y. M. Synthesis and crystal structures of 1D Cu coordination polymer based on tetrakis[3-(carboxyphenyl)oxamethyl]methane acid. Chin. J. Inorg. Chem. 2012, 28, 2530-2534.(21) Cao, C.; Wei, T. B.; Zhang, Q. S.; Lu, Y. Y.; Zhang, Y. M. Synthesis and crystal structures of 1D Cu coordination polymer based on tetrakis[3-(carboxyphenyl)oxamethyl]methane acid. Chin. J. Inorg. Chem. 2012, 28, 2530-2534.

    22. [22]

      (22) Kim, H.; Suh, M. P. Flexible eightfold interpenetrating diamondoid network generating 1D channels: selective binding with organic guests. Inorg. Chem. 2005, 44, 810-812.(22) Kim, H.; Suh, M. P. Flexible eightfold interpenetrating diamondoid network generating 1D channels: selective binding with organic guests. Inorg. Chem. 2005, 44, 810-812.

    23. [23]

      (23) Sheldrick, G. M. SHELXS-97 and SHELXL-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Göttingen, Germany 1997.(23) Sheldrick, G. M. SHELXS-97 and SHELXL-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Göttingen, Germany 1997.

    24. [24]

      (24) Blatov, V. A. IUCr CompComm Newsletter 2006, 7, 4.(24) Blatov, V. A. IUCr CompComm Newsletter 2006, 7, 4.

    25. [25]

      (25) Yam, V. V. W.; Lo, K. K. W. Luminescent polynuclear d10 metal complexes. Chem. Soc. Rev. 1999, 28, 323-334.(25) Yam, V. V. W.; Lo, K. K. W. Luminescent polynuclear d10 metal complexes. Chem. Soc. Rev. 1999, 28, 323-334.

    26. [26]

      (26) Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent metal-organic frameworks. Chem. Rev. 2012, 112, 1126-1162.(26) Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent metal-organic frameworks. Chem. Rev. 2012, 112, 1126-1162.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  899
  • HTML全文浏览量:  2
文章相关
  • 收稿日期:  2015-05-07
  • 网络出版日期:  2015-07-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章