基于水杨醛席夫碱锌配合物交联稳定化荧光聚合物胶束的合成及其对铜离子的荧光响应性

何强芳 吴映红 蔡志健 谢旺

引用本文: 何强芳, 吴映红, 蔡志健, 谢旺. 基于水杨醛席夫碱锌配合物交联稳定化荧光聚合物胶束的合成及其对铜离子的荧光响应性[J]. 应用化学, 2016, 33(6): 701-709. doi: 10.11944/j.issn.1000-0518.2016.06.150413 shu
Citation:  HE Qiangfang, WU Yinghong, CAI Zhijian, XIE Wang. Synthesis of Fluorescent Cross-linked Stabilized Polymeric Micelles Based on Salicylidene Schiff Base/Zn2+ Complexes and Sensor for Cu2+ Detection[J]. Chinese Journal of Applied Chemistry, 2016, 33(6): 701-709. doi: 10.11944/j.issn.1000-0518.2016.06.150413 shu

基于水杨醛席夫碱锌配合物交联稳定化荧光聚合物胶束的合成及其对铜离子的荧光响应性

    通讯作者: 何强芳,讲师;Tel:020-34113254;E-mail:hqfang@gdei.edu.cn;研究方向:新型有机高分子功能材料
  • 基金项目:

    广东省自然科学基金(2015A030310228);药物化学生物学国家重点实验室(南开大学)开放基金(20140535);聚合物分子工程国家重点实验室(复旦大学)开放基金(K2015-16);广东第二师范学院博士专项(2013ARF06);大学生创新训练计划(1427815052)资助项目 

摘要:S-十二烷基-S'-(α,α'-二甲基-α"-乙酸)-三硫代碳酸酯(DMAT)为链转移剂、2-羟基-5-乙烯基苯甲醛(HVB)为单体,利用可逆加成-断裂链转移自由基聚合法(RAFT)合成结构明确、数均相对分子质量可控的水杨醛聚合物(PHVB)。将PHVB直接地与单端胺基功能化聚乙二醇(mPEG-NH2)按n(-NH2 group)/n(-CHO group)=0.50投料进行醛-胺缩合反应,获得接枝率为50%的两亲性接枝水杨醛席夫碱聚合物PHVB-graft-PEG。采用凝胶渗透色谱仪(GPC)和核磁共振氢谱(1H NMR)对合成的聚合物的数均相对分子质量和结构进行了确证。将PHVB-graft-PEG直接地分散于无水乙醇中,自组装形成以聚乙烯水杨醛席夫碱为核、聚乙二醇为壳的胶束,然后以所得胶束为微反应器,与Zn(OAc)2进行配位反应得到外壳为可溶性链段PEG,内核为发光水杨醛席夫碱锌配合物的PHVB-graft-PEG/Zn2+交联稳定化胶束。通过紫外-可见分光光谱(UV-Vis)、荧光发射光谱(FLL)、动态光散射(DLS)和透射电子显微镜(TEM)分别对胶束的交联稳定化过程进行了表征。研究结果表明,经交联稳定化后,PHVB-graft-PEG/Zn2+胶束在干燥后仍可在水和常见有机溶剂中再分散形成粒径大小约为100 nm、在约460 nm处发射出蓝光荧光的纳米粒子,并且可作为荧光传感器,在水溶液中对Cu2+离子进行选择性识别,其荧光淬灭率与Cu2+离子浓度(0~50 μmol/L范围内)呈线性关系,最低检测下限至0.5 μmol/L,而其它共存离子如Cd2+、Mg2+、Ni2+、Pb2+、Ca2+、Hg2+、Al3+、Mn2+等对Cu2+离子的荧光响应性没有干扰,即可实现对Cu2+离子进行定量检测。

English

  • 
    1. [1] Plaquet A,Guillaume M,Champagne B,et al.Investigation on the Second-order Nonlinear Optical Responses in the Ketoenol Equilibrium of Anil Derivatives[J].J Phys Chem C,2008,112(14):5638-5645.[1] Plaquet A,Guillaume M,Champagne B,et al.Investigation on the Second-order Nonlinear Optical Responses in the Ketoenol Equilibrium of Anil Derivatives[J].J Phys Chem C,2008,112(14):5638-5645.

    2. [2] Baleizão C,Garcia H.Chiral Salen Complexes:An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts[J].Chem Rev,2006,106(9):3987-4043.[2] Baleizão C,Garcia H.Chiral Salen Complexes:An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts[J].Chem Rev,2006,106(9):3987-4043.

    3. [3] Lahiri D,Majumdar R,Mallick D,et al.Remarkable Photocytotoxicity in Hypoxic HeLa cells by a Dipyridophenazine Copper (Ⅱ) Schiff Base Thiolate[J].J Inorg Biochem,2011,105(8):1086-1094.[3] Lahiri D,Majumdar R,Mallick D,et al.Remarkable Photocytotoxicity in Hypoxic HeLa cells by a Dipyridophenazine Copper (Ⅱ) Schiff Base Thiolate[J].J Inorg Biochem,2011,105(8):1086-1094.

    4. [4] Cimerman Z,Galic N,Bosner B.The Schiff Bases of Salicylaldehyde and Aminopyridines as Highly Sensitive Analytical Reagent[J].Anal Chim Acta,1997,343(1/2):145-153.[4] Cimerman Z,Galic N,Bosner B.The Schiff Bases of Salicylaldehyde and Aminopyridines as Highly Sensitive Analytical Reagent[J].Anal Chim Acta,1997,343(1/2):145-153.

    5. [5] Sytnik A,Del Valle J C.Steady-state and Time-resolved Study of the Proton-transfer Fluorescence of 4-Hydroxy-5-azaphenanthrenein Model Solvents and in Complexes with Human Serum Albumin[J].J Phys Chem,1995,99(34):13028-13032.[5] Sytnik A,Del Valle J C.Steady-state and Time-resolved Study of the Proton-transfer Fluorescence of 4-Hydroxy-5-azaphenanthrenein Model Solvents and in Complexes with Human Serum Albumin[J].J Phys Chem,1995,99(34):13028-13032.

    6. [6] Zapata F,Caballero A,Espinosa A,et al.A Simple but Effective Ferrocene Derivative as a Redox,Colorimetric,and luorescent Receptor for Highly Selective Recognition of Zn2+ Ions[J].Org Lett,2007,9(12):2385-2388.[6] Zapata F,Caballero A,Espinosa A,et al.A Simple but Effective Ferrocene Derivative as a Redox,Colorimetric,and luorescent Receptor for Highly Selective Recognition of Zn2+ Ions[J].Org Lett,2007,9(12):2385-2388.

    7. [7] Li N,Xiang Y,Chen X,et al.Salicylaldehyde Hydrazones as Fluorescent Probes for Zinc Ion in Aqueous Solution of Physiological pH[J].Talanta,2009,79(2):327-332.[7] Li N,Xiang Y,Chen X,et al.Salicylaldehyde Hydrazones as Fluorescent Probes for Zinc Ion in Aqueous Solution of Physiological pH[J].Talanta,2009,79(2):327-332.

    8. [8] Xu Z,Yoon J,Spring D R.Fluorescent Chemosensors for Zn2+[J].Chem Soc Rev,2010,39(6):1996-2006.[8] Xu Z,Yoon J,Spring D R.Fluorescent Chemosensors for Zn2+[J].Chem Soc Rev,2010,39(6):1996-2006.

    9. [9] Wang L N,Qin W W,Tang X L,et al.Development and Applications of Fluorescent Indicators for Mg2+ and Zn2+[J].J Phys Chem A,2011,115(9):1609-1616.[9] Wang L N,Qin W W,Tang X L,et al.Development and Applications of Fluorescent Indicators for Mg2+ and Zn2+[J].J Phys Chem A,2011,115(9):1609-1616.

    10. [10] Safin D A,Babashkina M G,Garcia Y.Crown Ether-containing Schiff Base as a Highly Efficient "turn-on" Fluorescent Sensor for Determination and Separation of Zn2+ in Water[J].Dalton Trans,2013,42(6):1969-1972.[10] Safin D A,Babashkina M G,Garcia Y.Crown Ether-containing Schiff Base as a Highly Efficient "turn-on" Fluorescent Sensor for Determination and Separation of Zn2+ in Water[J].Dalton Trans,2013,42(6):1969-1972.

    11. [11] Khatua S,Choi S H,Lee J,et al.Highly Selective Fluorescence Detection of Cu2+ in Water by Chiral Dimeric Zn2+ Complexes Through Direct Displacement[J].Inorg Chem,2009,48(5):1799-1801.[11] Khatua S,Choi S H,Lee J,et al.Highly Selective Fluorescence Detection of Cu2+ in Water by Chiral Dimeric Zn2+ Complexes Through Direct Displacement[J].Inorg Chem,2009,48(5):1799-1801.

    12. [12] Khatua S,Kang J,Churchill D G.Direct Dizinc Displacement Approach for Efficient Detection of Cu2+ in Aqueous Media:Acetate Versus Phenolate Bridging Platforms[J].New J Chem,2010,34(6):1163-1169.[12] Khatua S,Kang J,Churchill D G.Direct Dizinc Displacement Approach for Efficient Detection of Cu2+ in Aqueous Media:Acetate Versus Phenolate Bridging Platforms[J].New J Chem,2010,34(6):1163-1169.

    13. [13] Gou C,Qin S H,Wu H Q,et al.A HighlySelective Chemosensor for Cu2+ and Al3+ in Two Different Ways Based on Salicylaldehyde Schiff[J].Inorg Chem Commun,2011,14(10):1622-1625.[13] Gou C,Qin S H,Wu H Q,et al.A HighlySelective Chemosensor for Cu2+ and Al3+ in Two Different Ways Based on Salicylaldehyde Schiff[J].Inorg Chem Commun,2011,14(10):1622-1625.

    14. [14] Sinha S,Koner R R,Kumar S,et al.Imine Containing Benzophenone Scaffold as an Efficient Chemical Device to Detect Selectively Al3+[J].RSC Adv,2013,3(2):345-351.[14] Sinha S,Koner R R,Kumar S,et al.Imine Containing Benzophenone Scaffold as an Efficient Chemical Device to Detect Selectively Al3+[J].RSC Adv,2013,3(2):345-351.

    15. [15] Upadhyay K K,Kumar A.Pyrimidine Based Highly Sensitive Fluorescent Receptor for Al3+ Showing Dual Signalling Mechanism[J].Org Biomol Chem,2010,8(21):4892-4897.[15] Upadhyay K K,Kumar A.Pyrimidine Based Highly Sensitive Fluorescent Receptor for Al3+ Showing Dual Signalling Mechanism[J].Org Biomol Chem,2010,8(21):4892-4897.

    16. [16] Zhou L,Feng Y,Cheng J H,et al.Simple,Selective,and Sensitive Colorimetric and Ratiometric Fluorescence/Phosphorescence Probes for Platinum (Ⅱ) Based on Salen-type Schiff Bases[J].RSC Adv,2012,2(28):10529-10536.[16] Zhou L,Feng Y,Cheng J H,et al.Simple,Selective,and Sensitive Colorimetric and Ratiometric Fluorescence/Phosphorescence Probes for Platinum (Ⅱ) Based on Salen-type Schiff Bases[J].RSC Adv,2012,2(28):10529-10536.

    17. [17] Xu Y,Meng J,Meng L X,et al.A Highly Selective Fluorescence-Based Polymer Sensor Incorporating an (R,R)-Salen Moiety for Zn2+ Detection[J].Chem-Eur J,2010,16(43):12898-12903.[17] Xu Y,Meng J,Meng L X,et al.A Highly Selective Fluorescence-Based Polymer Sensor Incorporating an (R,R)-Salen Moiety for Zn2+ Detection[J].Chem-Eur J,2010,16(43):12898-12903.

    18. [18] Song F Y,Ma X,Hou J L,et al.(R,R)-Salen/salan-based Polymer Fluorescence Sensors for Zn2+ Detection[J].Polymer,2011,52(26):6029-6036.[18] Song F Y,Ma X,Hou J L,et al.(R,R)-Salen/salan-based Polymer Fluorescence Sensors for Zn2+ Detection[J].Polymer,2011,52(26):6029-6036.

    19. [19] Hou J L,Song F Y,Wang L,et al.In Situ Generated 1:1 Zn (Ⅱ)-containing Polymer Complex Sensor for Highly Enantioselective Recognition of N-Boc-protected Alanine[J].Macromolecules,2012,45(19):7835-7842.[19] Hou J L,Song F Y,Wang L,et al.In Situ Generated 1:1 Zn (Ⅱ)-containing Polymer Complex Sensor for Highly Enantioselective Recognition of N-Boc-protected Alanine[J].Macromolecules,2012,45(19):7835-7842.

    20. [20] Li J F,Wu Y Z,Song F Y,et al.A Highly Selective and Sensitive Polymer-based OFF-ON Fluorescent Sensor for Hg2+ Detection Incorporating Salen and Perylenyl Moieties[J].J Mater Chem,2012,22(2):478-482.[20] Li J F,Wu Y Z,Song F Y,et al.A Highly Selective and Sensitive Polymer-based OFF-ON Fluorescent Sensor for Hg2+ Detection Incorporating Salen and Perylenyl Moieties[J].J Mater Chem,2012,22(2):478-482.

    21. [21] Song F Y,Wei G,Wang L,et al.Salen-based Chiral Fluorescence Polymer Sensor for Enantioselective Recognition of α-Hydroxyl Carboxylic Acids[J].J Org Chem,2012,77(10):4759-4764.[21] Song F Y,Wei G,Wang L,et al.Salen-based Chiral Fluorescence Polymer Sensor for Enantioselective Recognition of α-Hydroxyl Carboxylic Acids[J].J Org Chem,2012,77(10):4759-4764.

    22. [22] Xu Y,Zheng L F,Huang X B,et al.Fluorescence Sensors Based on Chiral Polymer for Highly Enantioselective Recognition of Phenylglycinol[J].Polymer,2010,51(5):994-997.[22] Xu Y,Zheng L F,Huang X B,et al.Fluorescence Sensors Based on Chiral Polymer for Highly Enantioselective Recognition of Phenylglycinol[J].Polymer,2010,51(5):994-997.

    23. [23] Cho Y S,Ihn C S,Lee H K,et al.Synthesis and Properties of Ruthenium-Coordinated Block Copolymers of 2-Vinylpyridine and Carbazole Derivatives[J].Macromol Rapid Commun,2001,22(15):1249-1253.[23] Cho Y S,Ihn C S,Lee H K,et al.Synthesis and Properties of Ruthenium-Coordinated Block Copolymers of 2-Vinylpyridine and Carbazole Derivatives[J].Macromol Rapid Commun,2001,22(15):1249-1253.

    24. [24] Smith A P,Fraser C L.Luminescent Polymeric Ruthenium Complexes with Polystyrene-b-poly (methyl methacrylate) Macroligands:The Sequential Activation of Initiator Sites for Blocks Generated by Parallel Polymerization Mechanisms[J].J Polym Sci Part A:Polym Chem,2002,40(23):4250-4255.[24] Smith A P,Fraser C L.Luminescent Polymeric Ruthenium Complexes with Polystyrene-b-poly (methyl methacrylate) Macroligands:The Sequential Activation of Initiator Sites for Blocks Generated by Parallel Polymerization Mechanisms[J].J Polym Sci Part A:Polym Chem,2002,40(23):4250-4255.

    25. [25] Cong Y,Fu J,Cheng Z,et al.Self-organization and Luminescent Properties of Nanostructured Europium (Ⅲ)-block Copolymer Complex Thin Films[J].J Polym Sci Part B:Polym Phys,2005,43(16):2181-2189.[25] Cong Y,Fu J,Cheng Z,et al.Self-organization and Luminescent Properties of Nanostructured Europium (Ⅲ)-block Copolymer Complex Thin Films[J].J Polym Sci Part B:Polym Phys,2005,43(16):2181-2189.

    26. [26] Chen B,Sleiman H F.Ruthenium Bipyridine-Containing Polymers and Block Copolymers via Ring-Opening Metathesis Polymerization[J].Macromolecules,2004,37(16):5866-5872.[26] Chen B,Sleiman H F.Ruthenium Bipyridine-Containing Polymers and Block Copolymers via Ring-Opening Metathesis Polymerization[J].Macromolecules,2004,37(16):5866-5872.

    27. [27] Wulff G,Akelah A.Synthesis of 5-Vinylsalicylaldehyde and a Simplified Synthesis of Some Divinyl Derivatives[J].Makromol Chem,1979,179:2647-2651.[27] Wulff G,Akelah A.Synthesis of 5-Vinylsalicylaldehyde and a Simplified Synthesis of Some Divinyl Derivatives[J].Makromol Chem,1979,179:2647-2651.

    28. [28] Lai J T,Filla D,Shea R.Functional Polymers from Novel Carboxyl-terminated Trithiocarbonates as Highly Efficient RAFT Agents[J].Macromolecules,2002,35(18):6754-6756.[28] Lai J T,Filla D,Shea R.Functional Polymers from Novel Carboxyl-terminated Trithiocarbonates as Highly Efficient RAFT Agents[J].Macromolecules,2002,35(18):6754-6756.

    29. [29] Wang Y,Goethals E J,Du Prez F E.Association Behavior between End-Functionalized Block Copolymers PEO-PPO-PEO and Poly (acrylic acid)[J].Macromol Chem Phys,2004,205(13):1774-1781.[29] Wang Y,Goethals E J,Du Prez F E.Association Behavior between End-Functionalized Block Copolymers PEO-PPO-PEO and Poly (acrylic acid)[J].Macromol Chem Phys,2004,205(13):1774-1781.

    30. [30] Xin Y,Yuan J Y.Schiff's Base as a Stimuli-responsive Linker in Polymer Chemistry[J].Polym Chem,2012,3(11):3045-3055.[30] Xin Y,Yuan J Y.Schiff's Base as a Stimuli-responsive Linker in Polymer Chemistry[J].Polym Chem,2012,3(11):3045-3055.

    31. [31] Zhao L Y,Sui D,Chai J,et al.Digital Logic Circuit Based on a Single Molecular System of Salicylidene Schiff Base[J].J Phys Chem B,2006,110(48):24299-24304.[31] Zhao L Y,Sui D,Chai J,et al.Digital Logic Circuit Based on a Single Molecular System of Salicylidene Schiff Base[J].J Phys Chem B,2006,110(48):24299-24304.

    32. [32] Wu J,Liu W,Zhuang X,et al.Fluorescence Turn on of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on[JG (]C[ZJLX,Y]N[JG)]Isomerization[J].Org Lett,2007,9(1):33-36.[32] Wu J,Liu W,Zhuang X,et al.Fluorescence Turn on of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on[JG (]C[ZJLX,Y]N[JG)]Isomerization[J].Org Lett,2007,9(1):33-36.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  256
  • HTML全文浏览量:  30
文章相关
  • 收稿日期:  2015-11-24
  • 网络出版日期:  2015-12-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章