Dependence of photocatalytic activity of ZnxCd1-xS quantum dot composition

Alice Hospodková Ladislav Svoboda Petr Praus

引用本文: Alice Hospodková, Ladislav Svoboda, Petr Praus. Dependence of photocatalytic activity of ZnxCd1-xS quantum dot composition[J]. 催化学报, 2015, 36(3): 328-335. doi: 10.1016/S1872-2067(14)60269-2 shu
Citation:  Alice Hospodková, Ladislav Svoboda, Petr Praus. Dependence of photocatalytic activity of ZnxCd1-xS quantum dot composition[J]. Chinese Journal of Catalysis, 2015, 36(3): 328-335. doi: 10.1016/S1872-2067(14)60269-2 shu

Dependence of photocatalytic activity of ZnxCd1-xS quantum dot composition

    通讯作者: Petr Praus
摘要: Aqueous colloidal dispersions containing ZnxCd1-xS quantum dots (QDs) of different x compositions were prepared by precipitating zinc and cadmium acetates with sodium sulphide, in the presence of a cetyltrimethylammonium bromide stabilizer. Ultraviolet-visible absorption spectroscopy was used to determine the transition energies of the QDs, which in turn were used to calculate their sizes, which depended on their composition. The QD size decreased with increasing Zn content. The photocatalytic activity of the ZnxCd1-xS QDs was studied by the decomposition of methylene blue under ultraviolet irradiation, at a maximum intensity at 365 nm (3.4 eV). Three different photocatalytic activity regions were observed, which depended on the Zn content. The quantum levels of the QDs could be excited by incident irradiation, and influenced the resulting photocatalytic activity. Maximum photocatalytic activity was achieved at x=0.6, where the QD transition energy was equal to the irradiation photon energy. The photocatalytic efficiency of the QDs depended on their surface area and arrangement of quantum levels, because of the quantum size effect.

English

    1. [1] Hirai T, Sato H, Komasawa I. Ind Eng Chem Res, 1994, 33: 3362[1] Hirai T, Sato H, Komasawa I. Ind Eng Chem Res, 1994, 33: 3362

    2. [2] Schmid G. Nanoparticles: From Theory to Applications. Weinheim: Wiley-VCH, 2010[2] Schmid G. Nanoparticles: From Theory to Applications. Weinheim: Wiley-VCH, 2010

    3. [3] Dutta K, Manna S, De S K. Synth Metals, 2009, 159: 315[3] Dutta K, Manna S, De S K. Synth Metals, 2009, 159: 315

    4. [4] Dib M, Chamarro M, Voliotis V, Fave J L, Guenand C, Roussignol P, Gacoin T, Boilot J P, Delerue C, Allan G, Lanoo M. Phys Stat Sol (b), 1999, 212: 293[4] Dib M, Chamarro M, Voliotis V, Fave J L, Guenand C, Roussignol P, Gacoin T, Boilot J P, Delerue C, Allan G, Lanoo M. Phys Stat Sol (b), 1999, 212: 293

    5. [5] Li Q, Meng H, Yu J G, Xiao W, Zheng Y Q, Wang J. Chem Eur J, 2014, 20: 1176[5] Li Q, Meng H, Yu J G, Xiao W, Zheng Y Q, Wang J. Chem Eur J, 2014, 20: 1176

    6. [6] Xu X, Lu R J, Zhao X F, Xu S, Lei X D, Zhang F Z, Evans D G. Appl Catal B, 2011, 102: 147[6] Xu X, Lu R J, Zhao X F, Xu S, Lei X D, Zhang F Z, Evans D G. Appl Catal B, 2011, 102: 147

    7. [7] Xu X, Lu R J, Zhao X F, Zhu Z, Xu S, Zhang F Z. Appl Catal B, 2012, 125: 11[7] Xu X, Lu R J, Zhao X F, Zhu Z, Xu S, Zhang F Z. Appl Catal B, 2012, 125: 11

    8. [8] Li Y C, Ye M F, Yang C H, Li X H, Li Y F. Adv Func Mater, 2005, 15: 433[8] Li Y C, Ye M F, Yang C H, Li X H, Li Y F. Adv Func Mater, 2005, 15: 433

    9. [9] Liu Y K, Zapien J A, Shan Y Y, Gen C Y, Lee C S, Lee S T. Adv Matter, 2005, 17: 1372[9] Liu Y K, Zapien J A, Shan Y Y, Gen C Y, Lee C S, Lee S T. Adv Matter, 2005, 17: 1372

    10. [10] Zhong X H, Liu S H, Zhang Z H, Li L, Wei Z, Knoll W. J Mater Chem, 2004, 14: 2790[10] Zhong X H, Liu S H, Zhang Z H, Li L, Wei Z, Knoll W. J Mater Chem, 2004, 14: 2790

    11. [11] Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J G, Gong J R. ACS Catal, 2013, 3: 882[11] Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J G, Gong J R. ACS Catal, 2013, 3: 882

    12. [12] Yu J G, Zhang J, Jaroniec M. Green Chem, 2010, 9: 1611[12] Yu J G, Zhang J, Jaroniec M. Green Chem, 2010, 9: 1611

    13. [13] Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Bando Y, Golberg D. Prog Mater Sci, 2011, 56: 175[13] Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Bando Y, Golberg D. Prog Mater Sci, 2011, 56: 175

    14. [14] Kočí K, Reli M, Kozák O, Lacný Z, Plachá D, Praus P, Obalová L. Catal Today, 2011, 176: 212[14] Kočí K, Reli M, Kozák O, Lacný Z, Plachá D, Praus P, Obalová L. Catal Today, 2011, 176: 212

    15. [15] Praus P, Kozák O, Kočí K, Panáček A, Dvorský R. J Colloid Interf Sci, 2011, 360: 574[15] Praus P, Kozák O, Kočí K, Panáček A, Dvorský R. J Colloid Interf Sci, 2011, 360: 574

    16. [16] Praus P, Matys J, Kozák O. J Braz Chem Soc, 2012, 23: 1900[16] Praus P, Matys J, Kozák O. J Braz Chem Soc, 2012, 23: 1900

    17. [17] Praus P, Svoboda L, Tokarský J, Hospodková A, Klem V. Appl Surf Sci, 2014, 292: 813[17] Praus P, Svoboda L, Tokarský J, Hospodková A, Klem V. Appl Surf Sci, 2014, 292: 813

    18. [18] Chiou C H, Wu C Y, Juang R S. Sep Purif Technol, 2008, 62: 559[18] Chiou C H, Wu C Y, Juang R S. Sep Purif Technol, 2008, 62: 559

    19. [19] Praus P, Dvorský R, Horínková P, Pospíšil M, Kovář P. J Colloid Interf Sci, 2012, 377: 58[19] Praus P, Dvorský R, Horínková P, Pospíšil M, Kovář P. J Colloid Interf Sci, 2012, 377: 58

    20. [20] Schooss D, Mews A, Eychmüller A, Weller H. Phys Rev B, 1994, 49: 17072[20] Schooss D, Mews A, Eychmüller A, Weller H. Phys Rev B, 1994, 49: 17072

    21. [21] Zgaren I, Balti J, Jaziri S. Solid State Commun, 2011, 151: 1743[21] Zgaren I, Balti J, Jaziri S. Solid State Commun, 2011, 151: 1743

    22. [22] Brus L E. J Chem Phys, 1984, 80: 4403[22] Brus L E. J Chem Phys, 1984, 80: 4403

    23. [23] Tauc J, Grigorovici R, Vancu A. Phys Stat Sol (b), 1966, 15: 627[23] Tauc J, Grigorovici R, Vancu A. Phys Stat Sol (b), 1966, 15: 627

    24. [24] Hospodková A, Nikl M, Pacherová O, Oswald J, Brůža P, Pánek D, Foltynski B, Hulicius E, Beitlerová A, Heuken M. Nanotechnology, 2014, 25: 455501[24] Hospodková A, Nikl M, Pacherová O, Oswald J, Brůža P, Pánek D, Foltynski B, Hulicius E, Beitlerová A, Heuken M. Nanotechnology, 2014, 25: 455501

    25. [25] Kulkarni S K, Winkler U, Deshmukh N, Borse P H, Fink R, Umbach E. Appl Surf Sci, 2001, 169-170: 438[25] Kulkarni S K, Winkler U, Deshmukh N, Borse P H, Fink R, Umbach E. Appl Surf Sci, 2001, 169-170: 438

    26. [26] Tokarský J, Matějka V, Neuwirthová L, Vontorová J, Mamulová Kutláková K, Kukutschová J, Čapková P. Chem Eng J, 2013, 222: 488[26] Tokarský J, Matějka V, Neuwirthová L, Vontorová J, Mamulová Kutláková K, Kukutschová J, Čapková P. Chem Eng J, 2013, 222: 488

    27. [27] Roberts G W, Satterfield C N. Ind Eng Chem Fund, 1965, 4: 288[27] Roberts G W, Satterfield C N. Ind Eng Chem Fund, 1965, 4: 288

    28. [28] Kumar K V, Porkodi K, Rocha F. Catal Commun, 2008, 9: 82[28] Kumar K V, Porkodi K, Rocha F. Catal Commun, 2008, 9: 82

    29. [29] Brosillon S, Lhomme L, Vallet C, Bouzaza A, Wolbert D. Appl Catal B, 2008, 18: 232[29] Brosillon S, Lhomme L, Vallet C, Bouzaza A, Wolbert D. Appl Catal B, 2008, 18: 232

  • 加载中
计量
  • PDF下载量:  234
  • 文章访问数:  651
  • HTML全文浏览量:  37
文章相关
  • 发布日期:  2015-03-20
  • 收稿日期:  2014-11-26
  • 网络出版日期:  2014-11-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章