Effects of oxidation pretreatment temperature on Kovar used as CO2 reforming catalyst

Sharon Rose de la Rama Hiroshi Yamada Tomohiko Tagawa

引用本文: Sharon Rose de la Rama, Hiroshi Yamada, Tomohiko Tagawa. Effects of oxidation pretreatment temperature on Kovar used as CO2 reforming catalyst[J]. 燃料化学学报, 2014, 42(5): 573-581. shu
Citation:  Sharon Rose de la Rama, Hiroshi Yamada, Tomohiko Tagawa. Effects of oxidation pretreatment temperature on Kovar used as CO2 reforming catalyst[J]. Journal of Fuel Chemistry and Technology, 2014, 42(5): 573-581. shu

Effects of oxidation pretreatment temperature on Kovar used as CO2 reforming catalyst

    通讯作者: Sharon Rose de la Rama(1983- ), PhD candidate (Chemical Engineering), main research: Ni-containing alloys as heterogeneous catalyst for biomass-derived hydrocarbon CO2 reforming, E-mail: srdelarama@yahoo.com.
  • 基金项目:

    Supported by a research grant (K2106) from the Ministry of Environment of Japan. (K2106)

摘要: The effect of oxidation pretreatment temperature (500~1 000 ℃) on the catalytic activity of Kovar applied on hydrocarbon CO2 reforming was examined. Catalytic performance evaluation using tetradecane at 800 ℃ with 70 μmol/s CO2 revealed 700 and 1 000 ℃ as the best pre-oxidation temperature in producing CO and H2, respectively. XRD and SEM-EDX analyses showed that a separate metal oxide layer composed of iron oxide (Fe2O3 and F3O4), nickel, cobalt, and possibly their respective oxides started to form when oxidation was conducted at 700 ℃ or higher.The presence of iron enhanced the stability of nickel in the structure while the compact structure of Fe3O4 resulted into the formation of a thick and rigid metal oxide layer on the surface of the Kovar tube. The strong physical bond between the metal oxide layer and Kovar tube provided the catalyst good mechanical strength and consequently good catalytic activity.

English

  • 
    1. [1] LAOSIRIPOJANA N, ASSABUMRUNGRAT S. Catalytic dry reforming of methane over high surface area ceria[J]. Appl Catal B: Environ, 2005, 60(1/2): 107-116.[1] LAOSIRIPOJANA N, ASSABUMRUNGRAT S. Catalytic dry reforming of methane over high surface area ceria[J]. Appl Catal B: Environ, 2005, 60(1/2): 107-116.

    2. [2] NGUYEN D L, LEROI P, LEDOUX M J, PHAM-HUU C. Influence of the oxygen pretreatment on the CO2 reforming of methane on Ni/β-SiC catalyst[J]. Catal Today, 2009, 141: 393-396.[2] NGUYEN D L, LEROI P, LEDOUX M J, PHAM-HUU C. Influence of the oxygen pretreatment on the CO2 reforming of methane on Ni/β-SiC catalyst[J]. Catal Today, 2009, 141: 393-396.

    3. [3] JIANG H T, HUA W, JI J B. Study of coke deposition on Ni catalysts for methane reforming to syngas[J]. Prog Chem, 2013, 25(5): 859-868.[3] JIANG H T, HUA W, JI J B. Study of coke deposition on Ni catalysts for methane reforming to syngas[J]. Prog Chem, 2013, 25(5): 859-868.

    4. [4] BUDIMAN A W, SONG S H. Dry reforming of methane over cobalt catalysts: A literature review of catalyst development[J]. Catal Surv Asia, 2012, 16: 183-197.[4] BUDIMAN A W, SONG S H. Dry reforming of methane over cobalt catalysts: A literature review of catalyst development[J]. Catal Surv Asia, 2012, 16: 183-197.

    5. [5] TAKANO A, TAGAWA T, GOTO S. Carbon dioxide reforming of methane on supported nickel catalysts[J]. J Chem Eng Jpn, 1994, 27(6): 727-731.[5] TAKANO A, TAGAWA T, GOTO S. Carbon dioxide reforming of methane on supported nickel catalysts[J]. J Chem Eng Jpn, 1994, 27(6): 727-731.

    6. [6] FIERRO J L G, PEA M A. Supported metals in the production of hydrogen. Supported metals in catalysis[M]. London: Imperial College Press, 2004: 229-282.[6] FIERRO J L G, PEA M A. Supported metals in the production of hydrogen. Supported metals in catalysis[M]. London: Imperial College Press, 2004: 229-282.

    7. [7] FERREIRA-APARICIO P, GUERRERO-RUIZ A, RODRIGUEZ-RAMOS I. Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide silica and alumina supported catalysts[J]. Appl Catal A: Gen, 1998, 170(1): 177-187.[7] FERREIRA-APARICIO P, GUERRERO-RUIZ A, RODRIGUEZ-RAMOS I. Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide silica and alumina supported catalysts[J]. Appl Catal A: Gen, 1998, 170(1): 177-187.

    8. [8] DJINOVIC P, CRNIVEC G O, ERJAVEC B, PINTAR A. Exceptional performance of novel Ni and Co bimetallic catalysts in methane dry reforming process[C]//Proceedings of the 9th World Congress of Chemical Engineering. South Korea, 2013: 184.[8] DJINOVIC P, CRNIVEC G O, ERJAVEC B, PINTAR A. Exceptional performance of novel Ni and Co bimetallic catalysts in methane dry reforming process[C]//Proceedings of the 9th World Congress of Chemical Engineering. South Korea, 2013: 184.

    9. [9] ROSTRUP-NIELSEN J, TRIMM D. Mechanisms of carbon formation on nickel-containing catalysts[J]. J Catal, 1977, 48(1/3): 155-165.[9] ROSTRUP-NIELSEN J, TRIMM D. Mechanisms of carbon formation on nickel-containing catalysts[J]. J Catal, 1977, 48(1/3): 155-165.

    10. [10] COURSON C, MAKAGA E, PETIT C, KIENNEMANN A. Development of Ni catalysts for gas production from bimass gasification. Reactivity in steam-and dry-reforming[J]. Catal Today, 2000, 63(2/4): 427-437.[10] COURSON C, MAKAGA E, PETIT C, KIENNEMANN A. Development of Ni catalysts for gas production from bimass gasification. Reactivity in steam-and dry-reforming[J]. Catal Today, 2000, 63(2/4): 427-437.

    11. [11] GADALLA A, BOWER B. The role of catalysts support on the activity of nickel for reforming methane with CO2[J]. Chem Eng Sci, 1988, 43(11): 3049-3062.[11] GADALLA A, BOWER B. The role of catalysts support on the activity of nickel for reforming methane with CO2[J]. Chem Eng Sci, 1988, 43(11): 3049-3062.

    12. [12] DE LA RAMA S R, KAWAI S, YAMADA H, TAGAWA T. Preliminary evaluation of surface oxidized Kovar as CO2 reforming catalyst[R]. An Oral Presentation Conducted at the Chemical Engineering Society of Japan 78th Annual Meeting. Osaka, Japan, 2013.[12] DE LA RAMA S R, KAWAI S, YAMADA H, TAGAWA T. Preliminary evaluation of surface oxidized Kovar as CO2 reforming catalyst[R]. An Oral Presentation Conducted at the Chemical Engineering Society of Japan 78th Annual Meeting. Osaka, Japan, 2013.

    13. [13] SOLYMOSI F, TOLMACSOV P, ZAKAR T S. Dry reforming of propane over supported Re catalyst[J]. J Catal, 2005, 233(1): 51-59.[13] SOLYMOSI F, TOLMACSOV P, ZAKAR T S. Dry reforming of propane over supported Re catalyst[J]. J Catal, 2005, 233(1): 51-59.

    14. [14] LUO D W, SHEN Z S. Oxidation behavior of Kovar alloy in controlled atmosphere[J]. Acta Metall Sinica (English Letters), 2008, 21(6): 409-418.[14] LUO D W, SHEN Z S. Oxidation behavior of Kovar alloy in controlled atmosphere[J]. Acta Metall Sinica (English Letters), 2008, 21(6): 409-418.

    15. [15] OSOJNIK CRNIVEC I G, DJINOVIC P, ERJAVEC B, PINTAR A. Effect of synthesis parameters on morphology and activity of bimetallic catalysts in CO2-CH4 reforming[J]. Chem Eng J, 2012, 207-208: 299-307.[15] OSOJNIK CRNIVEC I G, DJINOVIC P, ERJAVEC B, PINTAR A. Effect of synthesis parameters on morphology and activity of bimetallic catalysts in CO2-CH4 reforming[J]. Chem Eng J, 2012, 207-208: 299-307.

    16. [16] CHIKAMATSU N, TAGAWA T, GOTO S. Characterization of a new mixed oxide catalyst derived from hydrogen storage alloy[J]. J Mater Sci, 1995, 30(5): 1367-1372.[16] CHIKAMATSU N, TAGAWA T, GOTO S. Characterization of a new mixed oxide catalyst derived from hydrogen storage alloy[J]. J Mater Sci, 1995, 30(5): 1367-1372.

    17. [17] DE LIMA S M, ASSAF J M. Ni-Fe catalysts based on perovskite-type oxides for dry reforming of methane to syngas[J]. Catal Lett, 2006, 108(1/2): 63-70.[17] DE LIMA S M, ASSAF J M. Ni-Fe catalysts based on perovskite-type oxides for dry reforming of methane to syngas[J]. Catal Lett, 2006, 108(1/2): 63-70.

    18. [18] PROVENDIER H, PETIT C, ESTOURNES C, LIBS S, KIENNEMANN A. Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition[J]. Appl Catal A: Gen, 1999, 180(1/2): 163-173.[18] PROVENDIER H, PETIT C, ESTOURNES C, LIBS S, KIENNEMANN A. Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition[J]. Appl Catal A: Gen, 1999, 180(1/2): 163-173.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  349
  • HTML全文浏览量:  11
文章相关
  • 收稿日期:  2014-03-07
  • 网络出版日期:  2014-03-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章