双电层电容器用新型无灰煤(HyperCoal)基活性炭的制备

黄珊珊 赵小燕 谢凤梅 曹景沛 魏贤勇 宝田恭之

引用本文: 黄珊珊, 赵小燕, 谢凤梅, 曹景沛, 魏贤勇, 宝田恭之. 双电层电容器用新型无灰煤(HyperCoal)基活性炭的制备[J]. 燃料化学学报, 2014, 42(5): 539-544. shu
Citation:  HUANG Shan-shan, ZHAO Xiao-yan, XIE Feng-mei, CAO Jing-pei, WEI Xian-yong, TAKARADA Takayuki. Preparation of HyperCoal-based activated carbons for electric double layer capacitor[J]. Journal of Fuel Chemistry and Technology, 2014, 42(5): 539-544. shu

双电层电容器用新型无灰煤(HyperCoal)基活性炭的制备

  • 基金项目:

    国家自然科学基金(21206189,21306224) (21206189,21306224)

    中日战略合作项目(2013DFG60060) (2013DFG60060)

    中国矿业大学青年科技基金(2012QNA18)。 (2012QNA18)

摘要: 以无灰煤(HyperCoal)为原料,KOH和CaCO3为活化剂制备了煤基活性炭,采用低温N2吸附法表征了活性炭的比表面积和孔结构,测定了活性炭用作双电层电容器(EDLC)电极材料的电化学性能。考察了炭化温度、活化温度、活化时间和活化剂对活性炭电容特性的影响。研究结果表明,比表面积和比电容随着炭化温度的升高而降低,活化温度过高或活化时间太长对比电容有不利影响。此外,CaCO3影响活化过程中孔的开发,显著降低所制备活性炭的比表面积和比电容。在炭化温度为500 ℃、活化温度为800 ℃、KOH与焦的质量比为4:1和活化时间2 h下所得活性炭的比表面积和总孔容分别达到2 540 m2/g和1.65 cm3/g,该活性炭电极在0.5 mol/L TEABF4/PC电解液中的比电容达到最大值46.0 F/g。

English

  • 
    1. [1] ELMOUWAHIDI A, ZAPATA-BENABITHE Z, CARRASCO-MÍN F, CARRASCO-MARIF, MORENO-CASTILLA C. Activated carbons from KOH-activation of argan(argania spinosa) seed shells as supercapacitor electrodes[J]. Bioresour Technol, 2012, 111: 185-190.[1] ELMOUWAHIDI A, ZAPATA-BENABITHE Z, CARRASCO-MÍN F, CARRASCO-MARIF, MORENO-CASTILLA C. Activated carbons from KOH-activation of argan(argania spinosa) seed shells as supercapacitor electrodes[J]. Bioresour Technol, 2012, 111: 185-190.

    2. [2] 朱光真, 邓先伦, 孙 康. 电容器电极用新型炭材料的研究进展[J]. 生物质化学工程, 2009, 43(5): 42-48. (ZHU Guang-zhen, DENG Xian-lun, SUN Kang. Research progress on carbon materials as electrode of Capacitor[J]. Biomass Chemical Engineering, 2009, 43(5): 42-48.)[2] 朱光真, 邓先伦, 孙 康. 电容器电极用新型炭材料的研究进展[J]. 生物质化学工程, 2009, 43(5): 42-48. (ZHU Guang-zhen, DENG Xian-lun, SUN Kang. Research progress on carbon materials as electrode of Capacitor[J]. Biomass Chemical Engineering, 2009, 43(5): 42-48.)

    3. [3] INAGAKI M, KONNOA H, TANAIKE O. Carbon materials for electrochemical capacitors[J]. J Power Sources, 2010, 195(24): 7880-7903.[3] INAGAKI M, KONNOA H, TANAIKE O. Carbon materials for electrochemical capacitors[J]. J Power Sources, 2010, 195(24): 7880-7903.

    4. [4] HU C C, WANG C C, WU F C, TSENG R L. Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors[J]. Electrochim Acta, 2007, 52(7): 2498-2505.[4] HU C C, WANG C C, WU F C, TSENG R L. Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors[J]. Electrochim Acta, 2007, 52(7): 2498-2505.

    5. [5] 邢宝林, 张传祥, 谌伦建. 双电层电容器用煤基活性炭的制备与电化学性能表征[J]. 材料导报: 研究篇, 2009, 23(11): 106-109. (XING Bao-lin, ZHANG Chuan-xiang, CHEN Lun-jian. Preparation and electrochemical performance of coal-based activated carbons for electric double layer capacitor[J]. Materials Science: Research papers, 2009, 23(11): 106-109.)[5] 邢宝林, 张传祥, 谌伦建. 双电层电容器用煤基活性炭的制备与电化学性能表征[J]. 材料导报: 研究篇, 2009, 23(11): 106-109. (XING Bao-lin, ZHANG Chuan-xiang, CHEN Lun-jian. Preparation and electrochemical performance of coal-based activated carbons for electric double layer capacitor[J]. Materials Science: Research papers, 2009, 23(11): 106-109.)

    6. [6] 何月德, 刘洪波, 张红波. 煤基活性炭用作双电层电容器电极材料[J]. 电源技术, 2003, 27(3): 311-314. (HE Yue-de, LIU Hong-bo, ZHANG Hong-bo. Coal-based activated carbon with high specific surface areas the electrode materials for electric double layer capacitor[J]. Power Technology, 2003, 27(3): 311-314.)[6] 何月德, 刘洪波, 张红波. 煤基活性炭用作双电层电容器电极材料[J]. 电源技术, 2003, 27(3): 311-314. (HE Yue-de, LIU Hong-bo, ZHANG Hong-bo. Coal-based activated carbon with high specific surface areas the electrode materials for electric double layer capacitor[J]. Power Technology, 2003, 27(3): 311-314.)

    7. [7] QIAO W M, YOON S H, MOCHIDA I. KOH activation of needle coke to develop activated carbons for high-performance EDLC[J]. Energy Fuels, 2006, 20(4): 1680-1684.[7] QIAO W M, YOON S H, MOCHIDA I. KOH activation of needle coke to develop activated carbons for high-performance EDLC[J]. Energy Fuels, 2006, 20(4): 1680-1684.

    8. [8] LILLO-RÓDENAS M A, CAZORLA-AMORÓS D, LINARES-SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism[J]. Carbon, 2003, 41(2): 267-275.[8] LILLO-RÓDENAS M A, CAZORLA-AMORÓS D, LINARES-SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism[J]. Carbon, 2003, 41(2): 267-275.

    9. [9] OKUYAMA N, KOMATSU N, SHIGEHISA T, KANEKO T, TSURUYA S. Hyper-coal process to produce the ash-free coal[J]. Fuel Process Technol, 2004, 85(8/10): 947-967.[9] OKUYAMA N, KOMATSU N, SHIGEHISA T, KANEKO T, TSURUYA S. Hyper-coal process to produce the ash-free coal[J]. Fuel Process Technol, 2004, 85(8/10): 947-967.

    10. [10] YOSHIDA T, TAKANOHASHI T, SAKANISHI K, SAITO I. Relationship between thermal extraction yield and softening temperature for coals[J]. Energy Fuels, 2002, 16(4): 1006-1007.[10] YOSHIDA T, TAKANOHASHI T, SAKANISHI K, SAITO I. Relationship between thermal extraction yield and softening temperature for coals[J]. Energy Fuels, 2002, 16(4): 1006-1007.

    11. [11] TAKANOHASHI T, SHISHIDO T, KAWASHIMA H, SAITO I. Characterisation of HyperCoals from coals of various ranks[J]. Fuel, 2008, 87(4/5): 592-598.[11] TAKANOHASHI T, SHISHIDO T, KAWASHIMA H, SAITO I. Characterisation of HyperCoals from coals of various ranks[J]. Fuel, 2008, 87(4/5): 592-598.

    12. [12] KOYANO K, TAKANOHASHI T, SAITO I. Catalytic hydrogenation of HyperCoal(ashless coal) and reusability of catalyst[J]. Energy Fuels, 2009, 23(7): 3652-3657.[12] KOYANO K, TAKANOHASHI T, SAITO I. Catalytic hydrogenation of HyperCoal(ashless coal) and reusability of catalyst[J]. Energy Fuels, 2009, 23(7): 3652-3657.

    13. [13] SHARMA A, KAWASHIMA H, SAITO I, TAKANOHASHI T. Structural characteristics and gasification reactivity of chars prepared from K2CO3 mixed HyperCoals and coals[J]. Energy Fuels, 2009, 23(4): 1888-1895.[13] SHARMA A, KAWASHIMA H, SAITO I, TAKANOHASHI T. Structural characteristics and gasification reactivity of chars prepared from K2CO3 mixed HyperCoals and coals[J]. Energy Fuels, 2009, 23(4): 1888-1895.

    14. [14] ZHAO X Y, CAO J P, SATO K, OGAWA Y, TAKARADA T. High surface area activated carbon prepared from black liquor in the presence of high alkali metal content[J]. J Chem Eng Jpn, 2010, 43(12): 1029-1034.[14] ZHAO X Y, CAO J P, SATO K, OGAWA Y, TAKARADA T. High surface area activated carbon prepared from black liquor in the presence of high alkali metal content[J]. J Chem Eng Jpn, 2010, 43(12): 1029-1034.

    15. [15] XU B, WU F, SU Y F, CAO G P, CHEN S, ZHOU Z M, YANG Y S. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity[J]. Electrochim Acta, 2008, 53(26): 7730-7735.[15] XU B, WU F, SU Y F, CAO G P, CHEN S, ZHOU Z M, YANG Y S. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity[J]. Electrochim Acta, 2008, 53(26): 7730-7735.

    16. [16] WANG M X, WANG C Y, CHEN M M, WANG Y S, SHI Z Q, DU X, LI T Q, HU Z J. Preparation of high-performance activated carbons for electric double layer capacitors by KOH activation of mesophase pitches[J]. New Carbon Mater, 2010, 25(4): 285-290.[16] WANG M X, WANG C Y, CHEN M M, WANG Y S, SHI Z Q, DU X, LI T Q, HU Z J. Preparation of high-performance activated carbons for electric double layer capacitors by KOH activation of mesophase pitches[J]. New Carbon Mater, 2010, 25(4): 285-290.

    17. [17] HE X J, GENG Y J, QIU J S, ZHENG M D, LONG S, ZHANG X Y. Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors[J]. Carbon, 2010, 48(5): 1662-1669.[17] HE X J, GENG Y J, QIU J S, ZHENG M D, LONG S, ZHANG X Y. Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors[J]. Carbon, 2010, 48(5): 1662-1669.

    18. [18] DU X, GUO P, SONG H H, CHEN X H. Graphene nanosheets as electrode material for electric double-layer capacitor[J]. Electrochim Acta, 2010, 55(16): 4812-4819.[18] DU X, GUO P, SONG H H, CHEN X H. Graphene nanosheets as electrode material for electric double-layer capacitor[J]. Electrochim Acta, 2010, 55(16): 4812-4819.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  460
  • HTML全文浏览量:  25
文章相关
  • 收稿日期:  2013-11-26
  • 网络出版日期:  2014-02-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章