
Sub-100 nm hollow SnO2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances
English
Sub-100 nm hollow SnO2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances
-
-
-
[1] J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science 270(1995) 590-593.[1] J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science 270(1995) 590-593.
-
[2] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414(2001) 359-367.[2] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414(2001) 359-367.
-
[3] X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties, Chem. Mater. 21(2009) 2868-2874.[3] X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties, Chem. Mater. 21(2009) 2868-2874.
-
[4] M.G. Kim, J. Cho, Reversible and high-capacity nanostructured electrode materials for Li-ion batteries, Adv. Funct. Mater. 19(2009) 1497-1514.[4] M.G. Kim, J. Cho, Reversible and high-capacity nanostructured electrode materials for Li-ion batteries, Adv. Funct. Mater. 19(2009) 1497-1514.
-
[5] J.X. Li, Y. Zhao, N. Wang, L.H. Guan, A high performance carrier for SnO2 nanoparticles used in lithium ion battery, Chem. Commun. 47(2011) 5238-5240.[5] J.X. Li, Y. Zhao, N. Wang, L.H. Guan, A high performance carrier for SnO2 nanoparticles used in lithium ion battery, Chem. Commun. 47(2011) 5238-5240.
-
[6] J.M. Ma, J. Zhang, S.R. Wang, et al., Superior gas-sensing and lithium-storage performance SnO2 nanocrystals synthesized by hydrothermal method, CrystEng-Comm 13(2011) 6077-6081.[6] J.M. Ma, J. Zhang, S.R. Wang, et al., Superior gas-sensing and lithium-storage performance SnO2 nanocrystals synthesized by hydrothermal method, CrystEng-Comm 13(2011) 6077-6081.
-
[7] G.F. Xia, N. Li, D.Y. Li, et al., Molten-salt decomposition synthesis of SnO2 nanoparticles as anode materials for lithium ion batteries, Mater. Lett. 65(2011) 3377-3379.[7] G.F. Xia, N. Li, D.Y. Li, et al., Molten-salt decomposition synthesis of SnO2 nanoparticles as anode materials for lithium ion batteries, Mater. Lett. 65(2011) 3377-3379.
-
[8] J.J. Cai, Z.S. Li, S. Yao, et al., Close-packed SnO2 nanocrystals anchored on amorphous silica as a stable anode material for lithium-ion battery, Electrochim. Acta 74(2012) 182-188.[8] J.J. Cai, Z.S. Li, S. Yao, et al., Close-packed SnO2 nanocrystals anchored on amorphous silica as a stable anode material for lithium-ion battery, Electrochim. Acta 74(2012) 182-188.
-
[9] K. Ui, S. Kawamura, N. Kumagai, Fabrication of binder-free SnO2 nanoparticle electrode for lithium secondary batteries by electrophoretic deposition method, Electrochim. Acta 76(2012) 383-388.[9] K. Ui, S. Kawamura, N. Kumagai, Fabrication of binder-free SnO2 nanoparticle electrode for lithium secondary batteries by electrophoretic deposition method, Electrochim. Acta 76(2012) 383-388.
-
[10] W.S. Kim, Y. Hwa, J.H. Jeun, H.J. Sohn, S.H. Hong, Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application, J. Power Sources 225(2013) 108-112.[10] W.S. Kim, Y. Hwa, J.H. Jeun, H.J. Sohn, S.H. Hong, Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application, J. Power Sources 225(2013) 108-112.
-
[11] W. Wei, L.X. Song, L. Guo, SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries, Chin. Chem. Lett. 26(2015) 124-128.[11] W. Wei, L.X. Song, L. Guo, SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries, Chin. Chem. Lett. 26(2015) 124-128.
-
[12] H. Kim, J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials, J. Mater. Chem. 18(2008) 771-775.[12] H. Kim, J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials, J. Mater. Chem. 18(2008) 771-775.
-
[13] K. Shiva, S. Asokan, A.J. Bhattacharyya, Improved lithium cyclability and storage in a multi-sized pore ("differential spacers") mesoporous SnO2, Nanoscale 3(2011) 1501-1503.[13] K. Shiva, S. Asokan, A.J. Bhattacharyya, Improved lithium cyclability and storage in a multi-sized pore ("differential spacers") mesoporous SnO2, Nanoscale 3(2011) 1501-1503.
-
[14] S.J. Ding, X.W.D. Lou, SnO2 nanosheet hollow spheres with improved lithium storage capabilities, Nanoscale 3(2011) 3586-3588.[14] S.J. Ding, X.W.D. Lou, SnO2 nanosheet hollow spheres with improved lithium storage capabilities, Nanoscale 3(2011) 3586-3588.
-
[15] Z.Y. Wang, D.Y. Luan, F.Y.C. Boey, X.W. Lou, Fast formation of SnO2 nanoboxes with enhanced lithium storage capability, J. Am. Chem. Soc. 133(2011) 4738-4741.[15] Z.Y. Wang, D.Y. Luan, F.Y.C. Boey, X.W. Lou, Fast formation of SnO2 nanoboxes with enhanced lithium storage capability, J. Am. Chem. Soc. 133(2011) 4738-4741.
-
[16] H.B. Wu, J.S. Chen, X.W. Lou, H.H. Hng, Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties, J. Phys. Chem. C 115(2011) 24605-24610.[16] H.B. Wu, J.S. Chen, X.W. Lou, H.H. Hng, Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties, J. Phys. Chem. C 115(2011) 24605-24610.
-
[17] C. Wang, Y. Zhou, M. Ge, et al., Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity, J. Am. Chem. Soc. 132(2009) 46-47.[17] C. Wang, Y. Zhou, M. Ge, et al., Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity, J. Am. Chem. Soc. 132(2009) 46-47.
-
[18] P. Wu, M.Y. Du, H. Zhang, C.X. Zhai, D.R. Yang, Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage, ACS Appl. Mater. Interfaces 3(2011) 1946-1952.[18] P. Wu, M.Y. Du, H. Zhang, C.X. Zhai, D.R. Yang, Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage, ACS Appl. Mater. Interfaces 3(2011) 1946-1952.
-
[19] X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater. 18(2006) 2325-2329.[19] X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater. 18(2006) 2325-2329.
-
[20] X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties, Chem. Mater. 20(2008) 6562-6566.[20] X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties, Chem. Mater. 20(2008) 6562-6566.
-
[21] W.M. Zhang, X.L. Wu, J.S. Hu, Y.G. Guo, L.J. Wan, Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries, Adv. Funct. Mater. 18(2008) 3941-3946.[21] W.M. Zhang, X.L. Wu, J.S. Hu, Y.G. Guo, L.J. Wan, Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries, Adv. Funct. Mater. 18(2008) 3941-3946.
-
[22] H. Li, H. Zhou, Enhancing the performances of Li-ion batteries by carbon-coating:present and future, Chem. Commun. 48(2012) 1201-1217.[22] H. Li, H. Zhou, Enhancing the performances of Li-ion batteries by carbon-coating:present and future, Chem. Commun. 48(2012) 1201-1217.
-
[23] J. Liu, W. Li, A. Manthiram, Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries, Chem. Commun. 46(2010) 1437-1439.[23] J. Liu, W. Li, A. Manthiram, Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries, Chem. Commun. 46(2010) 1437-1439.
-
[24] Y. Chen, Q.Z. Huang, J. Wang, Q. Wang, J.M. Xue, Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications, J. Mater. Chem. 21(2011) 17448-17453.[24] Y. Chen, Q.Z. Huang, J. Wang, Q. Wang, J.M. Xue, Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications, J. Mater. Chem. 21(2011) 17448-17453.
-
[25] S.M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett. 9(2008) 72-75.[25] S.M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett. 9(2008) 72-75.
-
[26] L. Wang, D. Wang, H.Z. Dong, F.X. Zhang, J. Jin, Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery, Nano Lett. 13(2013) 1711-1716.[26] L. Wang, D. Wang, H.Z. Dong, F.X. Zhang, J. Jin, Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery, Nano Lett. 13(2013) 1711-1716.
-
[27] H. Park, T. Song, H. Han, et al., SnO2 encapsulated TiO2 hollow nanofibers as anode material for lithium ion batteries, Electrochem. Commun. 22(2012) 81-84.[27] H. Park, T. Song, H. Han, et al., SnO2 encapsulated TiO2 hollow nanofibers as anode material for lithium ion batteries, Electrochem. Commun. 22(2012) 81-84.
-
[28] N. Feng, L. Qiao, D.K. Hu, X.L. Sun, P. Wang, D.Y. He, Synthesis, characterization, and lithium-storage of ZnO-SnO2 hierarchical architectures, RSC Adv. 3(2013) 7758-7764.[28] N. Feng, L. Qiao, D.K. Hu, X.L. Sun, P. Wang, D.Y. He, Synthesis, characterization, and lithium-storage of ZnO-SnO2 hierarchical architectures, RSC Adv. 3(2013) 7758-7764.
-
[29] W. Wu, S.F. Zhang, J. Zhou, et al., Controlled synthesis of monodisperse sub-100 nm hollow SnO2 nanospheres:a template- and surfactant-free solutionphase route, the growth mechanism, optical properties, and application as a photocatalyst, Chem. Eur. J. 17(2011) 9708-9719.[29] W. Wu, S.F. Zhang, J. Zhou, et al., Controlled synthesis of monodisperse sub-100 nm hollow SnO2 nanospheres:a template- and surfactant-free solutionphase route, the growth mechanism, optical properties, and application as a photocatalyst, Chem. Eur. J. 17(2011) 9708-9719.
-
[30] S.Y. Liu, Y.H. Ma, S.P. Armes, C. Perruchot, J.F. Watts, Direct verification of the core-shell structure of shell cross-linked micelles in the solid state using X-ray photoelectron spectroscopy, Langmuir 18(2002) 7780-7784.[30] S.Y. Liu, Y.H. Ma, S.P. Armes, C. Perruchot, J.F. Watts, Direct verification of the core-shell structure of shell cross-linked micelles in the solid state using X-ray photoelectron spectroscopy, Langmuir 18(2002) 7780-7784.
-
[31] Q.Y. Tian, W. Wu, L.L. Sun, et al., Tube-like ternary α-Fe2O3@SnO2@Cu2O sandwich heterostructures:synthesis and enhanced photocatalytic properties, ACS Appl. Mater. Interfaces 6(2014) 13088-13097.[31] Q.Y. Tian, W. Wu, L.L. Sun, et al., Tube-like ternary α-Fe2O3@SnO2@Cu2O sandwich heterostructures:synthesis and enhanced photocatalytic properties, ACS Appl. Mater. Interfaces 6(2014) 13088-13097.
-
[32] W. Wu, Q.G. He, H. Chen, J.X. Tang, L.B. Nie, Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles, Nanotechnology 18(2007) 145609.[32] W. Wu, Q.G. He, H. Chen, J.X. Tang, L.B. Nie, Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles, Nanotechnology 18(2007) 145609.
-
[33] J.J. Chen, K. Yano, Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode, ACS Appl. Mater. Interfaces 5(2013) 7682-7687.[33] J.J. Chen, K. Yano, Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode, ACS Appl. Mater. Interfaces 5(2013) 7682-7687.
-
[34] X.F. Li, X.B. Meng, J. Liu, et al., Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage, Adv. Funct. Mater. 22(2012) 1647-1654.[34] X.F. Li, X.B. Meng, J. Liu, et al., Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage, Adv. Funct. Mater. 22(2012) 1647-1654.
-
[35] J.P. Liu, Y.Y. Li, X.T. Huang, et al., Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries, J. Mater. Chem. 19(2009) 1859-1864.[35] J.P. Liu, Y.Y. Li, X.T. Huang, et al., Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries, J. Mater. Chem. 19(2009) 1859-1864.
-
[36] X.W. Guo, X.P. Fang, Y. Sun, et al., Lithium storage in carbon-coated SnO2 by conversion reaction, J. Power Sources 226(2013) 75-81.[36] X.W. Guo, X.P. Fang, Y. Sun, et al., Lithium storage in carbon-coated SnO2 by conversion reaction, J. Power Sources 226(2013) 75-81.
-
[37] M. He, L.X. Yuan, X.L. Hu, et al., A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries, Nanoscale 5(2013) 3298-3305.[37] M. He, L.X. Yuan, X.L. Hu, et al., A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries, Nanoscale 5(2013) 3298-3305.
-
[38] M. Zhang, Y.W. Li, E. Uchaker, et al., Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties, Nano Energy 2(2013) 769-778.[38] M. Zhang, Y.W. Li, E. Uchaker, et al., Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties, Nano Energy 2(2013) 769-778.
-
-

计量
- PDF下载量: 0
- 文章访问数: 1013
- HTML全文浏览量: 21