Colorimetric and fluorimetric detection of cysteine: Unexpected Michael addition-elimination reaction

Hao-Ran Qu Zi-You Zhang Nan Wang Qian Sun Shan-Shan Liu Wei-Bing Zhang Jun-Hong Qian

Citation:  Hao-Ran Qu, Zi-You Zhang, Nan Wang, Qian Sun, Shan-Shan Liu, Wei-Bing Zhang, Jun-Hong Qian. Colorimetric and fluorimetric detection of cysteine: Unexpected Michael addition-elimination reaction[J]. Chinese Chemical Letters, 2015, 26(10): 1249-1254. doi: 10.1016/j.cclet.2015.06.016 shu

Colorimetric and fluorimetric detection of cysteine: Unexpected Michael addition-elimination reaction

    通讯作者: Jun-Hong Qian,
  • 基金项目:

    This work was financially supported by National 973 Program (No. 2011CB910403) (No. 2011CB910403)

    Shanghai Municipal Natural Science Foundation (No. 15ZR1409000)  (No. 15ZR1409000)

    the open fund of Shanghai Key Laboratory of Chemical Biology (No. SKLCB-2013-03). (No. SKLCB-2013-03)

摘要: The synthesis of three isomers based on Michael addition mechanism for the detection of sulfurcontaining species in aqueous solution is described. These compounds are constructed by conjugating an enone to a coumarin fluorophore. A substituted-phenyl (o, m, or p-) was appended at the carbonyl carbon to adjust the reactivity. The experimental results showed that (E)-7-(diethylamino)-3-(3-(3-hydroxyphenyl)-3-oxoprop-1-en-1-yl)-2H-chromen-2-one (m-QPS) and (E)-7-(diethylamino)-3-(3-(4-hydroxyphenyl)-3-oxoprop-1-en-1-yl)-2H-chromen-2-one (p-QPS) barely react with sulfur-containing nucleophiles, while (E)-7-(diethylamino)-3-(3-(2-hydroxyphenyl)-3-oxoprop-1-en-1-yl)-2H-chromen-2-one (o-QPS) exhibited a fast response toward sulfite, sulfide and thiols in DMSO/phosphate buffer (2:1). The above results are probably due to the intramolecular H-bonding activated Michael addition. More interestingly, cysteine triggered unusual photophysical responses of o-QPS:the original absorption (488 nm) and emission peaks (573 nm) underwent significant blue shifts initially and then recovered, which might be caused by the Michael addition and elimination reaction, respectively.

English

  • 
    1. [1] Z. Abedinzadeh, Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest, Can. J. Physiol. Pharmacol. 79(2001) 166-170.[1] Z. Abedinzadeh, Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest, Can. J. Physiol. Pharmacol. 79(2001) 166-170.

    2. [2] J.W. Calvert, S. Jha, S. Gundewar, et al., Hydrogen sulfide mediates cardioprotection through Nrf2 signaling, Circ. Res. 105(2009) 365-374.[2] J.W. Calvert, S. Jha, S. Gundewar, et al., Hydrogen sulfide mediates cardioprotection through Nrf2 signaling, Circ. Res. 105(2009) 365-374.

    3. [3] S.C. Gupta, J.H. Kim, S. Prasad, B.B. Aggarwal, Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals, Cancer Metastasis Rev. 29(2010) 405-434.[3] S.C. Gupta, J.H. Kim, S. Prasad, B.B. Aggarwal, Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals, Cancer Metastasis Rev. 29(2010) 405-434.

    4. [4] D.J. Zhou, L.B. Dai, H. Ni, G.L. Hui, S.G. Yuan, Preparation and characterization of polyphenylene sulfide-based chelating fibers, Chin. Chem. Lett. 25(2014) 221-225.[4] D.J. Zhou, L.B. Dai, H. Ni, G.L. Hui, S.G. Yuan, Preparation and characterization of polyphenylene sulfide-based chelating fibers, Chin. Chem. Lett. 25(2014) 221-225.

    5. [5] S.W. Benson, Thermochemistry and kinetics of sulfur-containing molecules and radicals, Chem. Rev. 78(1978) 23-35.[5] S.W. Benson, Thermochemistry and kinetics of sulfur-containing molecules and radicals, Chem. Rev. 78(1978) 23-35.

    6. [6] X.F. Yang, Z. Su, C.H. Liu, H.P. Qi, M.L. Zhao, A thiol-selective fluorogenic probe based on the cleavage of 4-methylumbelliferyl-20,40, 60-trinitropheyl ether, Anal. Bioanal. Chem. 396(2010) 2667-2674.[6] X.F. Yang, Z. Su, C.H. Liu, H.P. Qi, M.L. Zhao, A thiol-selective fluorogenic probe based on the cleavage of 4-methylumbelliferyl-20,40, 60-trinitropheyl ether, Anal. Bioanal. Chem. 396(2010) 2667-2674.

    7. [7] M. Zhang, M.X. Yu, F.Y. Li, et al., A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging, J. Am. Chem. Soc. 129(2007) 10322-10333.[7] M. Zhang, M.X. Yu, F.Y. Li, et al., A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging, J. Am. Chem. Soc. 129(2007) 10322-10333.

    8. [8] Y.C. Chen, C.C. Zhu, Z.H. Yang, et al., A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria, Angew. Chem. Int. Ed. 52(2013) 1688-1691.[8] Y.C. Chen, C.C. Zhu, Z.H. Yang, et al., A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria, Angew. Chem. Int. Ed. 52(2013) 1688-1691.

    9. [9] Y.Q. Sun, M.L. Chen, J. Liu, et al., Nitroolefin-based coumarin as a colorimetric and fluorescent dual probe for biothiols, Chem. Commun. 47(2011) 11029-11031.[9] Y.Q. Sun, M.L. Chen, J. Liu, et al., Nitroolefin-based coumarin as a colorimetric and fluorescent dual probe for biothiols, Chem. Commun. 47(2011) 11029-11031.

    10. [10] L. Li, H.Y. Li, L. Sun, et al., A highly sensitive fluorescence probe for fast thiolquantification assay of glutathione reductase, Angew. Chem. Int. Ed. 48(2009) 4034-4037.[10] L. Li, H.Y. Li, L. Sun, et al., A highly sensitive fluorescence probe for fast thiolquantification assay of glutathione reductase, Angew. Chem. Int. Ed. 48(2009) 4034-4037.

    11. [11] S.T. Huang, K.N. Ting, K.L. Wang, Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols, Anal. Chim. Acta 620(2008) 120-126.[11] S.T. Huang, K.N. Ting, K.L. Wang, Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols, Anal. Chim. Acta 620(2008) 120-126.

    12. [12] H. Chen, Z.L. Zou, S.L. Tan, et al., Efficient synthesis of water-soluble calix[4] arenes via thiol-ene"click" chemistry, Chin. Chem. Lett. 24(2013) 367-369.[12] H. Chen, Z.L. Zou, S.L. Tan, et al., Efficient synthesis of water-soluble calix[4] arenes via thiol-ene"click" chemistry, Chin. Chem. Lett. 24(2013) 367-369.

    13. [13] W.M. Xuan, C.Q. Sheng, Y.T. Cao, W.H. He, W. Wang, Fluorescent probes for the detection of hydrogen sulfide in biological systems, Angew. Chem. Int. Ed. 51(2012) 2282-2284.[13] W.M. Xuan, C.Q. Sheng, Y.T. Cao, W.H. He, W. Wang, Fluorescent probes for the detection of hydrogen sulfide in biological systems, Angew. Chem. Int. Ed. 51(2012) 2282-2284.

    14. [14] A.R. Lippert, E.J. New, C.J. Chang, Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells, J. Am. Chem. Soc. 133(2011) 10078-10080.[14] A.R. Lippert, E.J. New, C.J. Chang, Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells, J. Am. Chem. Soc. 133(2011) 10078-10080.

    15. [15] J.H. Lee, C.S. Lim, Y.S. Tian, J.H. Han, B.R. Cho, A two-photon fluorescent probe for thiols in live cells and tissues, J. Am. Chem. Soc. 132(2010) 1216-1217.[15] J.H. Lee, C.S. Lim, Y.S. Tian, J.H. Han, B.R. Cho, A two-photon fluorescent probe for thiols in live cells and tissues, J. Am. Chem. Soc. 132(2010) 1216-1217.

    16. [16] M.M. Pires, J. Chmielewski, Fluorescence imaging of cellular glutathione using a latent rhodamine, Org. Lett. 10(2008) 837-840.[16] M.M. Pires, J. Chmielewski, Fluorescence imaging of cellular glutathione using a latent rhodamine, Org. Lett. 10(2008) 837-840.

    17. [17] X. Li, S.J. Qian, Q.J. He, et al., Design and synthesis of a highly selective fluorescent turn-on probe for thiol bioimaging in living cells, Org. Biomol. Chem. 8(2010) 3627-3630.[17] X. Li, S.J. Qian, Q.J. He, et al., Design and synthesis of a highly selective fluorescent turn-on probe for thiol bioimaging in living cells, Org. Biomol. Chem. 8(2010) 3627-3630.

    18. [18] S.M. Ji, H.M. Guo, X.L. Yuan, et al., A highly selective off-on red-emitting phosphorescent thiol probe with large stokes shift and long luminescent lifetime, Org. Lett. 12(2010) 2876-2879.[18] S.M. Ji, H.M. Guo, X.L. Yuan, et al., A highly selective off-on red-emitting phosphorescent thiol probe with large stokes shift and long luminescent lifetime, Org. Lett. 12(2010) 2876-2879.

    19. [19] S.P. Wang, W.J. Deng, D. Sun, et al., A colorimetric and fluorescent merocyaninebased probe for biological thiols, Org. Biomol. Chem. 7(2009) 4017-4020.[19] S.P. Wang, W.J. Deng, D. Sun, et al., A colorimetric and fluorescent merocyaninebased probe for biological thiols, Org. Biomol. Chem. 7(2009) 4017-4020.

    20. [20] W. Jiang, Q.Q. Fu, H.Y. Fan, J. Ho, W. Wang, A highly selective fluorescent probe for thiophenols, Angew. Chem. 119(2007) 8597-8600.[20] W. Jiang, Q.Q. Fu, H.Y. Fan, J. Ho, W. Wang, A highly selective fluorescent probe for thiophenols, Angew. Chem. 119(2007) 8597-8600.

    21. [21] J. Bouffard, Y. Kim, T.M. Swage, R. Weissleder, S.A. Hilderbrand, A highly selective fluorescent probe for thiol bioimaging, Org. Lett. 10(2008) 37-40.[21] J. Bouffard, Y. Kim, T.M. Swage, R. Weissleder, S.A. Hilderbrand, A highly selective fluorescent probe for thiol bioimaging, Org. Lett. 10(2008) 37-40.

    22. [22] J.Y. Shao, H.M. Guo, S.M. Ji, J.Z. Zhao, Styryl-BODIPY based red-emitting fluorescent OFF-ON molecular probe for specific detection of cysteine, Biosens. Bioelectron. 26(2011) 3012-3017.[22] J.Y. Shao, H.M. Guo, S.M. Ji, J.Z. Zhao, Styryl-BODIPY based red-emitting fluorescent OFF-ON molecular probe for specific detection of cysteine, Biosens. Bioelectron. 26(2011) 3012-3017.

    23. [23] B.A. Krizek, B.T. Amann, V.J. Kilfoil, D.L. Merkle, J.M. Berg, A consensus zinc finger peptide:design, high-affinity metal binding, a pH-dependent structure, and a His to Cys sequence variant, J. Am. Chem. Soc. 113(1991) 4518-4523.[23] B.A. Krizek, B.T. Amann, V.J. Kilfoil, D.L. Merkle, J.M. Berg, A consensus zinc finger peptide:design, high-affinity metal binding, a pH-dependent structure, and a His to Cys sequence variant, J. Am. Chem. Soc. 113(1991) 4518-4523.

    24. [24] H.P. Wu, C.C. Huang, T.L. Cheng, W.L. Tseng, Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine, Talanta 76(2008) 347-352.[24] H.P. Wu, C.C. Huang, T.L. Cheng, W.L. Tseng, Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine, Talanta 76(2008) 347-352.

    25. [25] N. Shao, J.Y. Jin, S.M. Cheung, et al., A spiropyran-based ensemble for visual recognition and quantification of cysteine and homocysteine at physiological levels, Angew. Chem. 118(2006) 5066-5070.[25] N. Shao, J.Y. Jin, S.M. Cheung, et al., A spiropyran-based ensemble for visual recognition and quantification of cysteine and homocysteine at physiological levels, Angew. Chem. 118(2006) 5066-5070.

    26. [26] X.L. Pei, H.Y. Tian, W.B. Zhang, A.M. Brouwer, J.H. Qian, Colorimetric and fluorescent determination of sulfide and sulfite with kinetic discrimination, Analyst 139(2014) 5290-5296.[26] X.L. Pei, H.Y. Tian, W.B. Zhang, A.M. Brouwer, J.H. Qian, Colorimetric and fluorescent determination of sulfide and sulfite with kinetic discrimination, Analyst 139(2014) 5290-5296.

    27. [27] H.Y. Tian, J.H. Qian, Q. Sun, et al., A coumarin-based fluorescent probe for differential identification of sulfide and sulfite in CTAB micelle solution, Analyst 139(2014) 3373-3377.[27] H.Y. Tian, J.H. Qian, Q. Sun, et al., A coumarin-based fluorescent probe for differential identification of sulfide and sulfite in CTAB micelle solution, Analyst 139(2014) 3373-3377.

    28. [28] H.Y. Tian, J.H. Qian, Q. Sun, H.Y. Bai, W.B. Zhang, Colorimetric and ratiometric fluorescent detection of sulfite in water via cationic surfactant-promoted addition of sulfite to a,b-unsaturated ketone, Anal. Chim. Acta 788(2013) 165-170.[28] H.Y. Tian, J.H. Qian, Q. Sun, H.Y. Bai, W.B. Zhang, Colorimetric and ratiometric fluorescent detection of sulfite in water via cationic surfactant-promoted addition of sulfite to a,b-unsaturated ketone, Anal. Chim. Acta 788(2013) 165-170.

    29. [29] G.J. Kim, K. Lee, H. Kwon, H.T. Kim, Ratiometric fluorescence imaging of cellular glutathione, Org. Lett. 13(2011) 2799-2801.[29] G.J. Kim, K. Lee, H. Kwon, H.T. Kim, Ratiometric fluorescence imaging of cellular glutathione, Org. Lett. 13(2011) 2799-2801.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1043
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2015-06-20
  • 收稿日期:  2015-02-25
  • 网络出版日期:  2015-06-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章