Shape-memory poly(p-dioxanone)-poly(ε-caprolactone)/sepiolite nanocomposites with enhanced recovery stress

Mi-Qin Zhan Ke-Ke Yang Yu-Zhong Wang

Citation:  Mi-Qin Zhan, Ke-Ke Yang, Yu-Zhong Wang. Shape-memory poly(p-dioxanone)-poly(ε-caprolactone)/sepiolite nanocomposites with enhanced recovery stress[J]. Chinese Chemical Letters, 2015, 26(10): 1221-1224. doi: 10.1016/j.cclet.2015.07.019 shu

Shape-memory poly(p-dioxanone)-poly(ε-caprolactone)/sepiolite nanocomposites with enhanced recovery stress

    通讯作者: Ke-Ke Yang,
    Yu-Zhong Wang,
  • 基金项目:

    This work was supported financially by the National Science Foundation of China (Nos. 51473096, 51421061, J1103315)  (Nos. 51473096, 51421061, J1103315)

    Innovative Research Team in University of Ministry of Education of China (No. IRT 1026). (No. IRT 1026)

摘要: Shape-memory poly(p-dioxanone)-poly(ε-caprolactone)/sepiolite (PPDO-PCL/OSEP) nanocomposites with different OSEP nanofiber loading were fabricated by chain-extending the PPDO-diol and PCL/OSEP precursors. The precursors and the composites were characterized by 1H NMR, FT-IR, GPC, SEM and TEM. The results demonstrate that a part of PCL segments grafted on the surface of OSEP and composites display a fine dispersion of OSEP fiber in nanoscale with low OSEP content. The shape memory effect (SME) was evaluated by DMA, the results reveal that the PPDO-PCL/OSEP nanocomposites exhibit desirable shape-memory performance. The reinforcement of composites by incorporation of trace OSEP nanofiber evokes an effective improvement in shape-memory recovery stress.

English

  • 
    1. [1] R. Xiao, J.K. Guo, D.L. Safranski, T.D. Nquyen, Solvent-driven temperature memory and multiple shape memory effects, Soft Matter. 11(2015) 3977-3985.[1] R. Xiao, J.K. Guo, D.L. Safranski, T.D. Nquyen, Solvent-driven temperature memory and multiple shape memory effects, Soft Matter. 11(2015) 3977-3985.

    2. [2] Y.F. Luo, M.N. Huang, S.J. Wang, Y. Fu, Y.L. Wang, Design, synthesis and characterization of novel poly (urethane-urea) based on a macrodiol from poly (lactic acid) and poly (p-dioxanone), Chin. Chem. Lett. 22(2011) 237- 240.[2] Y.F. Luo, M.N. Huang, S.J. Wang, Y. Fu, Y.L. Wang, Design, synthesis and characterization of novel poly (urethane-urea) based on a macrodiol from poly (lactic acid) and poly (p-dioxanone), Chin. Chem. Lett. 22(2011) 237- 240.

    3. [3] X.T. Zheng, S.B. Zhou, Y. Xiao, et al., Shape memory effect of poly (D,L-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles, Colloids Surf. B:Biointerfaces 71(2009) 67-72.[3] X.T. Zheng, S.B. Zhou, Y. Xiao, et al., Shape memory effect of poly (D,L-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles, Colloids Surf. B:Biointerfaces 71(2009) 67-72.

    4. [4] W.M. Huang, Z. Ding, C.C. Wang, et al., Shape memory materials, Mater. Today 13(2010) 54-61.[4] W.M. Huang, Z. Ding, C.C. Wang, et al., Shape memory materials, Mater. Today 13(2010) 54-61.

    5. [5] C.L. Huang, M.J. He, M. Huo, et al., A facile method to produce PBS-PEG/CNTs nanocomposites with controllable electro-induced shape memory effect, Polym. Chem. 4(2013) 3987-3997.[5] C.L. Huang, M.J. He, M. Huo, et al., A facile method to produce PBS-PEG/CNTs nanocomposites with controllable electro-induced shape memory effect, Polym. Chem. 4(2013) 3987-3997.

    6. [6] K. Gall, M.L. Dunn, Y.P. Liu, et al., Shape memory polymer nanocomposites, Acta Mater. 50(2002) 5115-5126.[6] K. Gall, M.L. Dunn, Y.P. Liu, et al., Shape memory polymer nanocomposites, Acta Mater. 50(2002) 5115-5126.

    7. [7] B. Xu, Y.Q. Fu, M. Ahmad, et al., Thermo-mechanical properties of polystyrenebased shape memory nanocomposites, J. Mater. Chem. 20(2010) 3442-3448.[7] B. Xu, Y.Q. Fu, M. Ahmad, et al., Thermo-mechanical properties of polystyrenebased shape memory nanocomposites, J. Mater. Chem. 20(2010) 3442-3448.

    8. [8] K.K. Yang, X.L. Wang, Y.Z. Wang, Poly (p-dioxanone) and its copolymers, J. Macromol. Sci. Part C:Polym. Rev. 42(2002) 373-398.[8] K.K. Yang, X.L. Wang, Y.Z. Wang, Poly (p-dioxanone) and its copolymers, J. Macromol. Sci. Part C:Polym. Rev. 42(2002) 373-398.

    9. [9] L.P. Xiao, M. Wei, M.Q. Zhan, et al., Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding, Polym. Chem. 5(2014) 2231-2241.[9] L.P. Xiao, M. Wei, M.Q. Zhan, et al., Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding, Polym. Chem. 5(2014) 2231-2241.

    10. [10] M. Wei, M.Q. Zhan, D.Q. Yu, et al., A novel poly (tetramethylene ether) glycol and poly (ε-caprolactone) based dynamic network via quadruple hydrogenbonding with triple-shape effect and self-healing capacity, ACS Appl. Mater. Interfaces 7(2015) 2585-2596.[10] M. Wei, M.Q. Zhan, D.Q. Yu, et al., A novel poly (tetramethylene ether) glycol and poly (ε-caprolactone) based dynamic network via quadruple hydrogenbonding with triple-shape effect and self-healing capacity, ACS Appl. Mater. Interfaces 7(2015) 2585-2596.

    11. [11] A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications, Science 296(2002) 1673-1676.[11] A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications, Science 296(2002) 1673-1676.

    12. [12] H. Shariatmadari, A.R. Mermut, Magnesium- and silicon-induced phosphate desorption in smectite-, palygorskite-, and sepiolite-calcite systems, Soil Sci. Soc. Am. J. 63(1999) 1167-1173.[12] H. Shariatmadari, A.R. Mermut, Magnesium- and silicon-induced phosphate desorption in smectite-, palygorskite-, and sepiolite-calcite systems, Soil Sci. Soc. Am. J. 63(1999) 1167-1173.

    13. [13] B. Wang, C. Ma, Z.C. Xiong, et al., Synthesis of novel copolymer:poly (p-dioxanone-co-L-phenylalanine), Chin. Chem. Lett. 24(2013) 392-396.[13] B. Wang, C. Ma, Z.C. Xiong, et al., Synthesis of novel copolymer:poly (p-dioxanone-co-L-phenylalanine), Chin. Chem. Lett. 24(2013) 392-396.

    14. [14] Z.C. Qiu, J.J. Zhang, Y. Niu, et al., Preparation of poly (p-dioxanone)/sepiolite nanocomposites with excellent strength/toughness balance via surface-initiated polymerization, Ind. Eng. Chem. Res. 50(2011) 10006-10016.[14] Z.C. Qiu, J.J. Zhang, Y. Niu, et al., Preparation of poly (p-dioxanone)/sepiolite nanocomposites with excellent strength/toughness balance via surface-initiated polymerization, Ind. Eng. Chem. Res. 50(2011) 10006-10016.

    15. [15] Y. Niu, P. Zhang, J.J. Zhang, et al., Poly (p-dioxanone)-poly (ethylene glycol) network:synthesis, characterization, and its shape memory effect, Polym. Chem. 3(2012) 2508-2516.[15] Y. Niu, P. Zhang, J.J. Zhang, et al., Poly (p-dioxanone)-poly (ethylene glycol) network:synthesis, characterization, and its shape memory effect, Polym. Chem. 3(2012) 2508-2516.

    16. [16] T. Xie, Tunable polymer multi-shape memory effect, Nature 464(2010) 267-270.[16] T. Xie, Tunable polymer multi-shape memory effect, Nature 464(2010) 267-270.

    17. [17] Z.Q. Duan, Y.T. Liu, X.M. Xie, X.Y. Ye, A simple and green route to transparent boron nitride/PVA nanocomposites with significantly improved mechanical and thermal properties, Chin. Chem. Lett. 24(2013) 17-19.[17] Z.Q. Duan, Y.T. Liu, X.M. Xie, X.Y. Ye, A simple and green route to transparent boron nitride/PVA nanocomposites with significantly improved mechanical and thermal properties, Chin. Chem. Lett. 24(2013) 17-19.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1016
  • HTML全文浏览量:  17
文章相关
  • 发布日期:  2015-07-14
  • 收稿日期:  2015-06-02
  • 网络出版日期:  2015-06-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章