A highly selective turn-on colorimetric and luminescence sensor based on a triphenylamine-appended ruthenium(II) dye for detecting mercury ion

Su-Hua Fan Jie Shen Hai Wu Ke-Zhi Wangb An-Guo Zhang

Citation:  Su-Hua Fan, Jie Shen, Hai Wu, Ke-Zhi Wangb, An-Guo Zhang. A highly selective turn-on colorimetric and luminescence sensor based on a triphenylamine-appended ruthenium(II) dye for detecting mercury ion[J]. Chinese Chemical Letters, 2015, 26(5): 580-584. doi: 10.1016/j.cclet.2014.11.031 shu

A highly selective turn-on colorimetric and luminescence sensor based on a triphenylamine-appended ruthenium(II) dye for detecting mercury ion

  • 基金项目:

    the Natural Science Foundation of Anhui Province (No. 1408085QB39) (No. 1408085QB39)

    the Natural Science Foundation of Sichuan Provincial Department of Education (No. 13ZB0056)  (No. 13ZB0056)

摘要: A dual colorimetric and luminescent sensor based on a heteroleptic ruthenium dye [Ru(Hipdpa)(Hdcbpy)(NCS)2]-·0.5H+0.5[N(C4H9)4]+ Ru(Hipdpa) {where Hdcbpy = monodeprotonted-4,4'-dicarboxy-2,2'- bipyridine and Hipdpa = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline} for selective detection of Hg2+ is presented. The results of spectrophotometric titrations revealed an evident luminescence intensity enhancement (I/I0 = 11) and a considerable blue shift in visible absorption and luminescence maxima with the addition of Hg2+. The sensitive response of the optical sensor on Hg2+ was attributed to the binding of the electron-deficient Hg2+ to the electron-rich sulfur atom of the thiocyanate (NCS) ligand in the Ru(Hipdpa), which led to an increase in the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Accordingly, the blue shift in the absorption spectrum of Ru(Hipdpa) due to the binding of Hg2+ was obtained. Ru(Hipdpa) was found to have decreased Hg2+ detection limit and improved linear region as compared to di(tetrabutylammonium) cis-bis(isothiocyanato)bis(2,2'-bipyridine-4-carboxylic acid-4'- carboxylate)ruthenium(II) N719. Moreover, a dramatic color change from pink to yellow was observed, which allowed simple monitoring of Hg2+ by either naked eyes or a simple colorimetric reader. Therefore, the proposed sensor can provide potential applications for Hg2+ detection.

English

  • 
    1. [1] H.H. Harris, I.J. Pickering, G.N. George, The chemical form of mercury in fish, Science 301 (2003) 1203.[1] H.H. Harris, I.J. Pickering, G.N. George, The chemical form of mercury in fish, Science 301 (2003) 1203.

    2. [2] M.S. Gustin, M. Coolbaugh, M. Engle, et al., Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains, Environ. Geol. 43 (2003) 339-351.[2] M.S. Gustin, M. Coolbaugh, M. Engle, et al., Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains, Environ. Geol. 43 (2003) 339-351.

    3. [3] C.M.L. Carvalho, E.H. Chew, S.I. Hashemy, J. Lu, A. Holmgren, Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity, J. Biol. Chem. 283 (2008) 11913-11923.[3] C.M.L. Carvalho, E.H. Chew, S.I. Hashemy, J. Lu, A. Holmgren, Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity, J. Biol. Chem. 283 (2008) 11913-11923.

    4. [4] T.W. Clarkson, L. Magos, G.J. Myers, The toxicology of mercury-current exposures and clinical manifestations, N. Engl. J. Med. 349 (2003) 1731-1737.[4] T.W. Clarkson, L. Magos, G.J. Myers, The toxicology of mercury-current exposures and clinical manifestations, N. Engl. J. Med. 349 (2003) 1731-1737.

    5. [5] G.J. Myers, P.W. Davidson, C. Cox, et al., Summary of the seychelles child development study on the relationship of fetal methylmercury exposure to neurodevelopment, Neurotoxicology 16 (1995) 711-716.[5] G.J. Myers, P.W. Davidson, C. Cox, et al., Summary of the seychelles child development study on the relationship of fetal methylmercury exposure to neurodevelopment, Neurotoxicology 16 (1995) 711-716.

    6. [6] M. Harada, Minamata disease: methylmercury poisoning in Japan caused by environmental pollution, Crit. Rev. Toxicol. 25 (1995) 1-24.[6] M. Harada, Minamata disease: methylmercury poisoning in Japan caused by environmental pollution, Crit. Rev. Toxicol. 25 (1995) 1-24.

    7. [7] H.N. Kim, W.X. Ren, J.S. Kim, J. Yoon, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions, Chem. Soc. Rev. 41 (2012) 3210- 3244.[7] H.N. Kim, W.X. Ren, J.S. Kim, J. Yoon, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions, Chem. Soc. Rev. 41 (2012) 3210- 3244.

    8. [8] J.O. Moon, M.G. Choi, T. Sun, J.I. Choe, S.K. Chang, Synthesis of thionaphthalimides and their dual Hg2+-selective signaling by desulfurization of thioimides, Dyes Pigment 96 (2013) 170-175.[8] J.O. Moon, M.G. Choi, T. Sun, J.I. Choe, S.K. Chang, Synthesis of thionaphthalimides and their dual Hg2+-selective signaling by desulfurization of thioimides, Dyes Pigment 96 (2013) 170-175.

    9. [9] X.J. Jiang, C.L. Wong, P.C. Lo, K.P. Ng Dennis, A highly selective and sensitive BODIPY-based colourimetric and turn-on fluorescent sensor for Hg2+ ions, Dalton Trans. 41 (2012) 1801-1807.[9] X.J. Jiang, C.L. Wong, P.C. Lo, K.P. Ng Dennis, A highly selective and sensitive BODIPY-based colourimetric and turn-on fluorescent sensor for Hg2+ ions, Dalton Trans. 41 (2012) 1801-1807.

    10. [10] S. Maiti, C. Pezzato, S.G. Martin, L.J. Prins, Multivalent interactions regulate signal transduction in a self-assembled Hg2+ sensor, J. Am. Chem. Soc. 136 (2014) 11288-11291.[10] S. Maiti, C. Pezzato, S.G. Martin, L.J. Prins, Multivalent interactions regulate signal transduction in a self-assembled Hg2+ sensor, J. Am. Chem. Soc. 136 (2014) 11288-11291.

    11. [11] J.F. Li, Y.Z. Wu, F.Y. Song, et al., A highly selective and sensitive polymer-based OFF-ON fluorescent sensor for Hg2+ detection incorporating salen and perylenyl moieties, J. Mater. Chem. 22 (2012) 478-482.[11] J.F. Li, Y.Z. Wu, F.Y. Song, et al., A highly selective and sensitive polymer-based OFF-ON fluorescent sensor for Hg2+ detection incorporating salen and perylenyl moieties, J. Mater. Chem. 22 (2012) 478-482.

    12. [12] Y.C. Chen, C.C. Zhu, Z.H. Yang, et al., A new "turn-on" chemodosimeter for Hg2+: ICT fluorophore formation via Hg2+-induced carbaldehyde recovery from 1,3- dithiane, Chem. Commun. 48 (2012) 5094-5096.[12] Y.C. Chen, C.C. Zhu, Z.H. Yang, et al., A new "turn-on" chemodosimeter for Hg2+: ICT fluorophore formation via Hg2+-induced carbaldehyde recovery from 1,3- dithiane, Chem. Commun. 48 (2012) 5094-5096.

    13. [13] Z.Q. Hu, W.M. Zhuang, M. Li, et al., Highly sensitive and selective turn-on fluorescent chemodosimeter for Hg2+ based on thiorhodamine 6G-amide and its applications for biological imaging, Dyes Pigments 98 (2013) 286-289.[13] Z.Q. Hu, W.M. Zhuang, M. Li, et al., Highly sensitive and selective turn-on fluorescent chemodosimeter for Hg2+ based on thiorhodamine 6G-amide and its applications for biological imaging, Dyes Pigments 98 (2013) 286-289.

    14. [14] L. Wang, X.J. Zhu, W.Y. Wong, et al., Dipyrrolylquinoxaline-bridged Schiff bases: a new class of fluorescent sensors for mercury(II), Dalton Trans. (19) (2005) 3235- 3240.[14] L. Wang, X.J. Zhu, W.Y. Wong, et al., Dipyrrolylquinoxaline-bridged Schiff bases: a new class of fluorescent sensors for mercury(II), Dalton Trans. (19) (2005) 3235- 3240.

    15. [15] Z.K. Wu, Zhang Y.F., J.S. Ma, G.Q. Yang, Ratiometric Zn2+ sensor and strategy for Hg2+ selective recognition by central metal ion replacement, Inorg. Chem. 45 (2006) 3140-3142.[15] Z.K. Wu, Zhang Y.F., J.S. Ma, G.Q. Yang, Ratiometric Zn2+ sensor and strategy for Hg2+ selective recognition by central metal ion replacement, Inorg. Chem. 45 (2006) 3140-3142.

    16. [16] Z. Gu, M. Zhao, Y. Sheng, L.A. Bentolila, Y. Tang, Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay, Anal. Chem. 83 (2011) 2324-2329.[16] Z. Gu, M. Zhao, Y. Sheng, L.A. Bentolila, Y. Tang, Detection of mercury ion by infrared fluorescent protein and its hydrogel-based paper assay, Anal. Chem. 83 (2011) 2324-2329.

    17. [17] X. Ma, F.Y. Song, L. Wang, Y.X. Cheng, C.J. Zhu, Polymer-based colorimetric and "turn off" fluorescence sensor incorporating benzo[2,1,3]thiadiazole moiety for Hg2+ detection, J. Polym. Sci. Part A: Polym. Chem. 50 (2012) 517-522.[17] X. Ma, F.Y. Song, L. Wang, Y.X. Cheng, C.J. Zhu, Polymer-based colorimetric and "turn off" fluorescence sensor incorporating benzo[2,1,3]thiadiazole moiety for Hg2+ detection, J. Polym. Sci. Part A: Polym. Chem. 50 (2012) 517-522.

    18. [18] K. Rurack, M. Kollmannsberger, U. Resch-Genger, J. Daub, A selective and sensitive fluoroionophore for HgII, AgI , and CuII with virtually decoupled fluorophore and receptor units, J. Am. Chem. Soc. 122 (2000) 968-969.[18] K. Rurack, M. Kollmannsberger, U. Resch-Genger, J. Daub, A selective and sensitive fluoroionophore for HgII, AgI , and CuII with virtually decoupled fluorophore and receptor units, J. Am. Chem. Soc. 122 (2000) 968-969.

    19. [19] X.M. Wang, H. Yan, X.L. Feng, Y. Chen, 1-Pyrenecarboxaldehyde thiosemicarbazone: a novel fluorescent molecular sensor towards mercury (II) ion, Chin. Chem. Lett. 21 (2010) 1124-1128.[19] X.M. Wang, H. Yan, X.L. Feng, Y. Chen, 1-Pyrenecarboxaldehyde thiosemicarbazone: a novel fluorescent molecular sensor towards mercury (II) ion, Chin. Chem. Lett. 21 (2010) 1124-1128.

    20. [20] E. Coronado, J.R. Galán-Mascarós, C. Martí-Gastaldo, et al., Reversible colorimetric probes for mercury sensing, J. Am. Chem. Soc. 127 (2005) 12351-12356.[20] E. Coronado, J.R. Galán-Mascarós, C. Martí-Gastaldo, et al., Reversible colorimetric probes for mercury sensing, J. Am. Chem. Soc. 127 (2005) 12351-12356.

    21. [21] A.Reynal, J. Albero, A. Vidal-Ferran, E. Palomares, Diastereoselectivity andmolecular recognition of mercury(II) ions, Inorg. Chem. Commun. 12 (2009) 131-134.[21] A.Reynal, J. Albero, A. Vidal-Ferran, E. Palomares, Diastereoselectivity andmolecular recognition of mercury(II) ions, Inorg. Chem. Commun. 12 (2009) 131-134.

    22. [22] W.C. Yang, S.H. Fan, K.Z. Wang, Optically highly selective sensing of fluoride ion by N3 dye, Acta Phys. Chim. Sin. 24 (2008) 1313-1315.[22] W.C. Yang, S.H. Fan, K.Z. Wang, Optically highly selective sensing of fluoride ion by N3 dye, Acta Phys. Chim. Sin. 24 (2008) 1313-1315.

    23. [23] X.H. Li, X.F. Duan, F.Y. Li, C.H. Huang, Synthesis of new mixed-ligands amphiphilic ruthenium complex and its naked-eye detecable recognition of Hg2+, Chem. J. Chin. Univ. 27 (2006) 419-423.[23] X.H. Li, X.F. Duan, F.Y. Li, C.H. Huang, Synthesis of new mixed-ligands amphiphilic ruthenium complex and its naked-eye detecable recognition of Hg2+, Chem. J. Chin. Univ. 27 (2006) 419-423.

    24. [24] S.H. Fan, A.G. Zhang, C.C. Ju, L.H. Gao, K.Z. Wang, A triphenylamine-grafted imidazo[4,5-f][1,10]phenanthroline ruthenium(II) complex: acid-base and photoelectric properties, Inorg. Chem. 49 (2010) 3752-3763.[24] S.H. Fan, A.G. Zhang, C.C. Ju, L.H. Gao, K.Z. Wang, A triphenylamine-grafted imidazo[4,5-f][1,10]phenanthroline ruthenium(II) complex: acid-base and photoelectric properties, Inorg. Chem. 49 (2010) 3752-3763.

    25. [25] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 03, Inc, Pittsburgh, PA, 2003.[25] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 03, Inc, Pittsburgh, PA, 2003.

    26. [26] P. Job, Formation and stability of inorganic complexes in solution, Ann. Chim. 9 (1928) 113-203.[26] P. Job, Formation and stability of inorganic complexes in solution, Ann. Chim. 9 (1928) 113-203.

    27. [27] M. Zhang, M.Y. Li, F.Y. Li, et al., A novel Y-type two-photon active fluorophore: synthesis and appliciation in ratiometric fluorescent sensosr for fluoride anion, Dyes Pigment 77 (2008) 408-414.[27] M. Zhang, M.Y. Li, F.Y. Li, et al., A novel Y-type two-photon active fluorophore: synthesis and appliciation in ratiometric fluorescent sensosr for fluoride anion, Dyes Pigment 77 (2008) 408-414.

    28. [28] D.Q. Shi, H.Y. Wang, X.Y. Li, et al., Novel N,N'-diacylhydrazine-based colorimetric receptors for selective sensing of fluoride and acetate anions, Chin. J. Chem. 25 (2007) 973-976.[28] D.Q. Shi, H.Y. Wang, X.Y. Li, et al., Novel N,N'-diacylhydrazine-based colorimetric receptors for selective sensing of fluoride and acetate anions, Chin. J. Chem. 25 (2007) 973-976.

    29. [29] R.G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc. 85 (1963) 3533- 3539.[29] R.G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc. 85 (1963) 3533- 3539.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  856
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2014-11-26
  • 收稿日期:  2014-09-15
  • 网络出版日期:  2014-11-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章