
Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles as an effi cient and green catalyst for the synthesis of pyrano[2,3-c]pyrazoles
English
Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles as an effi cient and green catalyst for the synthesis of pyrano[2,3-c]pyrazoles
-
Key words:
- Cesium carbonate
- / Catalysis
- / Pyranopyrazoles
- / Magnetic nanoparticles
- / Hydroxyapatite
-
-
-
[1] C.W. Lim, I.S. Lee, Magnetically recyclable nanocatalyst systems for the organic reactions, Nano Today 5 (2010) 412-434.[1] C.W. Lim, I.S. Lee, Magnetically recyclable nanocatalyst systems for the organic reactions, Nano Today 5 (2010) 412-434.
-
[2] S. Shylesh, V. Schü nemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.[2] S. Shylesh, V. Schü nemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.
-
[3] P. Riente, C. Mendoza, M.A. Pericás, Functionalization of Fe3O4 magnetic nanoparticles for organocatalytic Michael reactions, J. Mater. Chem. 21 (2011) 7350-7355.[3] P. Riente, C. Mendoza, M.A. Pericás, Functionalization of Fe3O4 magnetic nanoparticles for organocatalytic Michael reactions, J. Mater. Chem. 21 (2011) 7350-7355.
-
[4] R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts, J. Am. Chem. Soc. 128 (2006) 5279-5282.[4] R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts, J. Am. Chem. Soc. 128 (2006) 5279-5282.
-
[5] G.L. Hornyak, H.F. Tibbals, J. Dutta, J.J. Moore, Introduction to Nanoscience and Nanotechnology, CRC Press, USA, 2008.[5] G.L. Hornyak, H.F. Tibbals, J. Dutta, J.J. Moore, Introduction to Nanoscience and Nanotechnology, CRC Press, USA, 2008.
-
[6] H.J. Kim, J.E. Ahn, S. Haam, et al., Synthesis and characterization of mesoporous Fe/SiO2 for magnetic drug targeting, J. Mater. Chem. 16 (2006) 1617-1621.[6] H.J. Kim, J.E. Ahn, S. Haam, et al., Synthesis and characterization of mesoporous Fe/SiO2 for magnetic drug targeting, J. Mater. Chem. 16 (2006) 1617-1621.
-
[7] H.M. Fan, J.B. Yi, Y. Yang, et al., Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications, ACS Nano 3 (2009) 2798-2808.[7] H.M. Fan, J.B. Yi, Y. Yang, et al., Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications, ACS Nano 3 (2009) 2798-2808.
-
[8] S.A. Shah, M. Hashmi, S. Alam, A. Shamim, Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer, J. Magn. Magn. Mater. 322 (2010) 375-381.[8] S.A. Shah, M. Hashmi, S. Alam, A. Shamim, Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer, J. Magn. Magn. Mater. 322 (2010) 375-381.
-
[9] A. Chaudhuri, M. Mandal, K. Mandal, Preparation and study of NiFe2O4/SiO2 core- shell nanocomposites, J. Alloys Compd. 487 (2009) 698-702.[9] A. Chaudhuri, M. Mandal, K. Mandal, Preparation and study of NiFe2O4/SiO2 core- shell nanocomposites, J. Alloys Compd. 487 (2009) 698-702.
-
[10] A. Goldman, Modern Ferrite Technology, 2nd ed., Springer, USA, 2006.[10] A. Goldman, Modern Ferrite Technology, 2nd ed., Springer, USA, 2006.
-
[11] J. Deng, L.P. Mo, F.Y. Zhao, et al., Sulfonic acid supported on hydroxyapatiteencapsulated-γ-Fe2O3 nanocrystallites as a magnetically separable catalyst for one-pot reductive amination of carbonyl compounds, Green Chem. 13 (2011) 2576-2584.[11] J. Deng, L.P. Mo, F.Y. Zhao, et al., Sulfonic acid supported on hydroxyapatiteencapsulated-γ-Fe2O3 nanocrystallites as a magnetically separable catalyst for one-pot reductive amination of carbonyl compounds, Green Chem. 13 (2011) 2576-2584.
-
[12] L. Ma’mani, M. Sheykhan, A. Heydari, M. Faraji, Y. Yamini, Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically Brønsted acid for N-formylation of amines, Appl. Catal. A 377 (2010) 64-69.[12] L. Ma’mani, M. Sheykhan, A. Heydari, M. Faraji, Y. Yamini, Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically Brønsted acid for N-formylation of amines, Appl. Catal. A 377 (2010) 64-69.
-
[13] M.B. Smith, March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, John Wiley & Sons, 2013.[13] M.B. Smith, March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, John Wiley & Sons, 2013.
-
[14] H. Hattori, Heterogeneous basic catalysis, Chem. Rev. 95 (1995) 537-558.[14] H. Hattori, Heterogeneous basic catalysis, Chem. Rev. 95 (1995) 537-558.
-
[15] T. Hida, K. Komura, Y. Sugi, Cesium carbonate supported on alumina for the Michael addition of diethyl malonate to methyl acrylates, Bull. Chem. Soc. Jpn. 84 (2011) 960-967.[15] T. Hida, K. Komura, Y. Sugi, Cesium carbonate supported on alumina for the Michael addition of diethyl malonate to methyl acrylates, Bull. Chem. Soc. Jpn. 84 (2011) 960-967.
-
[16] M. Gupta, R. Gupta, M. Anand, Hydroxyapatite supported caesium carbonate as a new recyclable solid base catalyst for the Knoevenagel condensation in water, Beilstein J. Org. Chem. 5 (2009) 68-74.[16] M. Gupta, R. Gupta, M. Anand, Hydroxyapatite supported caesium carbonate as a new recyclable solid base catalyst for the Knoevenagel condensation in water, Beilstein J. Org. Chem. 5 (2009) 68-74.
-
[17] L. Bonsignore, G. Loy, D. Secci, A. Calignano, Synthesis and pharmacological activity of 2-oxo-(2H)-1-benzopyran-3-carboxamide derivatives, Eur. J. Med. Chem. 28 (1993) 517-520.[17] L. Bonsignore, G. Loy, D. Secci, A. Calignano, Synthesis and pharmacological activity of 2-oxo-(2H)-1-benzopyran-3-carboxamide derivatives, Eur. J. Med. Chem. 28 (1993) 517-520.
-
[18] G. Vasuki, K. Kumaravel, Rapid four-component reactions in water: synthesis of pyranopyrazoles, Tetrahedron Lett. 49 (2008) 5636-5638.[18] G. Vasuki, K. Kumaravel, Rapid four-component reactions in water: synthesis of pyranopyrazoles, Tetrahedron Lett. 49 (2008) 5636-5638.
-
[19] A. Khojastehnezhad, M. Rahimizadeh, F. Moeinpour, H. Eshghi, M. Bakavoli, Polyphosphoric acid supported on silica-coated NiFe2O4 nanoparticles: an efficient and magnetically recoverable catalyst for N-formylation of amines, C.R. Chimie 17 (2014) 459-464.[19] A. Khojastehnezhad, M. Rahimizadeh, F. Moeinpour, H. Eshghi, M. Bakavoli, Polyphosphoric acid supported on silica-coated NiFe2O4 nanoparticles: an efficient and magnetically recoverable catalyst for N-formylation of amines, C.R. Chimie 17 (2014) 459-464.
-
[20] F. Moeinpour, A. Khojastehnezhad, Polyphosphoric acid supported on Ni0.5Zn0.5-Fe2O4 nanoparticles as a magnetically-recoverable green catalyst for the synthesis of pyranopyrazoles, Arab. J. Chem. (2014), http://dx.doi.org/10.1016/j.arabjc. 2014.02.009.[20] F. Moeinpour, A. Khojastehnezhad, Polyphosphoric acid supported on Ni0.5Zn0.5-Fe2O4 nanoparticles as a magnetically-recoverable green catalyst for the synthesis of pyranopyrazoles, Arab. J. Chem. (2014), http://dx.doi.org/10.1016/j.arabjc. 2014.02.009.
-
[21] A. Khojastehnezhad, M. Rahimizadeh, H. Eshghi, F. Moeinpour, M. Bakavoli, Ferric hydrogen sulfate supported on silica-coated nickel ferrite nanoparticles as new and green magnetically separable catalyst for 1,8-dioxodecahydroacridine synthesis, Chin. J. Catal. 35 (2014) 376-382.[21] A. Khojastehnezhad, M. Rahimizadeh, H. Eshghi, F. Moeinpour, M. Bakavoli, Ferric hydrogen sulfate supported on silica-coated nickel ferrite nanoparticles as new and green magnetically separable catalyst for 1,8-dioxodecahydroacridine synthesis, Chin. J. Catal. 35 (2014) 376-382.
-
[22] D. Zins, V. Cabuil, R. Massart, New aqueous magnetic fluids, J. Mol. Liq. 83 (1999) 217-232.[22] D. Zins, V. Cabuil, R. Massart, New aqueous magnetic fluids, J. Mol. Liq. 83 (1999) 217-232.
-
[23] M. Babaie, H. Sheibani, Nanosized magnesium oxide as a highly effective heterogeneous base catalyst for the rapid synthesis of pyranopyrazoles via a tandem four-component reaction, Arab. J. Chem. 4 (2011) 159-162.[23] M. Babaie, H. Sheibani, Nanosized magnesium oxide as a highly effective heterogeneous base catalyst for the rapid synthesis of pyranopyrazoles via a tandem four-component reaction, Arab. J. Chem. 4 (2011) 159-162.
-
[24] M. Farahi, B. Karami, I. Sedighimehr, H. Mohamadi Tanuraghaj, An environmentally friendly synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives catalyzed by tungstate sulfuric acid, Chin. Chem. Lett. 25 (2014) 1580-1582.[24] M. Farahi, B. Karami, I. Sedighimehr, H. Mohamadi Tanuraghaj, An environmentally friendly synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives catalyzed by tungstate sulfuric acid, Chin. Chem. Lett. 25 (2014) 1580-1582.
-
[25] H.F. Zhang, Z.Q. Ye, G. Zhao, Enantioselective synthesis of functionalized fluorinated dihydropyrano[2,3-c]pyrazoles catalyzed by a simple bifunctional diaminocyclohexane- thiourea, Chin. Chem. Lett. 25 (2014) 535-540.[25] H.F. Zhang, Z.Q. Ye, G. Zhao, Enantioselective synthesis of functionalized fluorinated dihydropyrano[2,3-c]pyrazoles catalyzed by a simple bifunctional diaminocyclohexane- thiourea, Chin. Chem. Lett. 25 (2014) 535-540.
-
[26] M.H. Brooker, J. Wang, Raman and infrared studies of lithium and cesium carbonates, Spectrochim. Acta A 48 (1992) 999-1008.[26] M.H. Brooker, J. Wang, Raman and infrared studies of lithium and cesium carbonates, Spectrochim. Acta A 48 (1992) 999-1008.
-
-

计量
- PDF下载量: 0
- 文章访问数: 958
- HTML全文浏览量: 24