
Highly effi cient and regioselective thiocyanation of aromatic amines, anisols and activated phenols with H2O2/NH4SCN catalyzed by nanomagnetic Fe3O4
-
关键词:
- Arenes
- / Green oxidant
- / Hydrogen peroxide
- / Nanomagnetic Fe3O4
- / NH4SCN
- / Thiocyanation
English
Highly effi cient and regioselective thiocyanation of aromatic amines, anisols and activated phenols with H2O2/NH4SCN catalyzed by nanomagnetic Fe3O4
-
Key words:
- Arenes
- / Green oxidant
- / Hydrogen peroxide
- / Nanomagnetic Fe3O4
- / NH4SCN
- / Thiocyanation
-
-
-
[1] (a) Y. Cui, P.E. Floreancig, Synthesis of sulfur-containing heterocycles through oxidative carbon-hydrogen bond functionalization, Org. Lett. 14 (2012) 1720- 1723;[1] (a) Y. Cui, P.E. Floreancig, Synthesis of sulfur-containing heterocycles through oxidative carbon-hydrogen bond functionalization, Org. Lett. 14 (2012) 1720- 1723;
-
[2]
(b) I.P. Beletskaya, V.P. Ananikov, Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions, Chem. Rev. 111 (2011) 1596-1636;(b) I.P. Beletskaya, V.P. Ananikov, Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions, Chem. Rev. 111 (2011) 1596-1636;
-
[3]
(c) P. Bichler, J. Love, in: A. Vigalok (Ed.), Topics of Organometallic Chemistry, vol. 31, Springer, Heidelberg, 2010, pp. 39-64.(c) P. Bichler, J. Love, in: A. Vigalok (Ed.), Topics of Organometallic Chemistry, vol. 31, Springer, Heidelberg, 2010, pp. 39-64.
-
[2] (a) For a review see: R.G. Guy, in: S. Patai (Ed.), The Chemistry of the Cyanates and their Thio Derivatives, Wiley Interscience, New York, 1977, p. 819;[2] (a) For a review see: R.G. Guy, in: S. Patai (Ed.), The Chemistry of the Cyanates and their Thio Derivatives, Wiley Interscience, New York, 1977, p. 819;
-
[5]
(b) A.W. Erian, S.M. Sherif, The chemistry of thiocyanic esters, Tetrahedron 55 (1999) 7957-8024.(b) A.W. Erian, S.M. Sherif, The chemistry of thiocyanic esters, Tetrahedron 55 (1999) 7957-8024.
-
[3] (a) M. Benn, Glucosinolates, Pure Appl. Chem. 49 (1977) 197-210;[3] (a) M. Benn, Glucosinolates, Pure Appl. Chem. 49 (1977) 197-210;
-
[7]
(b) A.T. Pham, T. Ichida, W.Y. Yoshida, et al., Two marine sesquiterpene thiocyanates, Tetrahedron Lett. 32 (1991) 4843-4846.(b) A.T. Pham, T. Ichida, W.Y. Yoshida, et al., Two marine sesquiterpene thiocyanates, Tetrahedron Lett. 32 (1991) 4843-4846.
-
[4] (a) B.L. Leblanc, B.C. Jursic, Preparation of 5-alkylthio and 5-arylthiotetrazoles from thiocyanates using phase transfer catalysis, Synth. Commun. 28 (1998) 3591-3599;[4] (a) B.L. Leblanc, B.C. Jursic, Preparation of 5-alkylthio and 5-arylthiotetrazoles from thiocyanates using phase transfer catalysis, Synth. Commun. 28 (1998) 3591-3599;
-
[9]
(b) A.A. Newman, Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives, 1st ed., Academic Press, 1975;(b) A.A. Newman, Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives, 1st ed., Academic Press, 1975;
-
[10]
(c) D.L. Mackinnon, A.P. Farrel, The effect of 2-(thiocyanomethylthio)benzothiazole on juvenile coho salmon (Oncorhynchus kisutch): sublethal toxicity testing, Environ. Toxicol. Chem. 11 (1992) 1541-1548.(c) D.L. Mackinnon, A.P. Farrel, The effect of 2-(thiocyanomethylthio)benzothiazole on juvenile coho salmon (Oncorhynchus kisutch): sublethal toxicity testing, Environ. Toxicol. Chem. 11 (1992) 1541-1548.
-
[5] (a) Y.T. Lee, S.Y. Choi, Y.K. Chung, Microwave-assisted palladium-catalyzed regioselective cyanothiolation of alkynes with thiocyanates, Tetrahedron Lett. 48 (2007) 5673-5677;[5] (a) Y.T. Lee, S.Y. Choi, Y.K. Chung, Microwave-assisted palladium-catalyzed regioselective cyanothiolation of alkynes with thiocyanates, Tetrahedron Lett. 48 (2007) 5673-5677;
-
[12]
(b) Z.H. Zhang, L.S. Liebeskind, Palladium-catalyzed, copper(I)-mediated coupling of boronic acids and benzylthiocyanate: a cyanide-free cyanation of boronic acids, Org. Lett. 8 (2006) 4331-4333;(b) Z.H. Zhang, L.S. Liebeskind, Palladium-catalyzed, copper(I)-mediated coupling of boronic acids and benzylthiocyanate: a cyanide-free cyanation of boronic acids, Org. Lett. 8 (2006) 4331-4333;
-
[13]
(c) R. Riemschneider, Thiocarbamates and related compounds: X. A new reaction of thiocyanates, J. Am. Chem. Soc. 78 (1956) 844-847;(c) R. Riemschneider, Thiocarbamates and related compounds: X. A new reaction of thiocyanates, J. Am. Chem. Soc. 78 (1956) 844-847;
-
[14]
(d) T. Billard, B.R. Langlois, M. Medebielle, Tetrakis(dimethylamino)ethylene (TDAE) mediated addition of difluoromethyl anions to heteroaryl thiocyanates: a new simple access to heteroaryl-SCF2R derivatives, Tetrahedron Lett. 42 (2001) 3463-3465;(d) T. Billard, B.R. Langlois, M. Medebielle, Tetrakis(dimethylamino)ethylene (TDAE) mediated addition of difluoromethyl anions to heteroaryl thiocyanates: a new simple access to heteroaryl-SCF2R derivatives, Tetrahedron Lett. 42 (2001) 3463-3465;
-
[15]
(e) F.D. Toste, F. Laronde, W.J. Still, Thiocyanate as a versatile synthetic unit: efficient conversion of ArSCN to aryl alkyl sulfides and aryl thioesters, Tetrahedron Lett. 36 (1995) 2949-2952;(e) F.D. Toste, F. Laronde, W.J. Still, Thiocyanate as a versatile synthetic unit: efficient conversion of ArSCN to aryl alkyl sulfides and aryl thioesters, Tetrahedron Lett. 36 (1995) 2949-2952;
-
[16]
(f) M.S. Grant, H.R. Snyder, Thiocyanation of indole: some reactions of 3-thiocyanoindole, J. Am. Chem. Soc. 82 (1960) 2742-2744;(f) M.S. Grant, H.R. Snyder, Thiocyanation of indole: some reactions of 3-thiocyanoindole, J. Am. Chem. Soc. 82 (1960) 2742-2744;
-
[17]
(g) Y. Kita, T. Takada, S. Mihara, B.A. Whelan, H. Thoma, Novel and direct nucleophilic sulfenylation and thiocyanation of phenol ethers using a hypervalent iodine(III) reagent, J. Org. Chem. 60 (1995) 7144-7148.(g) Y. Kita, T. Takada, S. Mihara, B.A. Whelan, H. Thoma, Novel and direct nucleophilic sulfenylation and thiocyanation of phenol ethers using a hypervalent iodine(III) reagent, J. Org. Chem. 60 (1995) 7144-7148.
-
[6] S. Sajjadifar, O. Louie, Regioselective thiocyanation of aromatic and heteroaromatic compounds by using boron sulfonic acid as a new, efficient, and cheap catalyst in water, J. Chem. (2013), article ID: 674946.[6] S. Sajjadifar, O. Louie, Regioselective thiocyanation of aromatic and heteroaromatic compounds by using boron sulfonic acid as a new, efficient, and cheap catalyst in water, J. Chem. (2013), article ID: 674946.
-
[7] V.A. Patapov, K.A. Volkova, D.A. Malinovich, et al., Thiocyanation of 4,5,6,7- tetrahydroindole, Russ. J. Org. Chem. 49 (2013) 619-620.[7] V.A. Patapov, K.A. Volkova, D.A. Malinovich, et al., Thiocyanation of 4,5,6,7- tetrahydroindole, Russ. J. Org. Chem. 49 (2013) 619-620.
-
[8] M.A. Karimi Zarchi, N. Ebrahimi, An efficient and simple method for diazotization- thiocyanation of aryl amine using cross-linked poly (4-vinylpyridine) supported thiocyanate ion, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 1226-1235.[8] M.A. Karimi Zarchi, N. Ebrahimi, An efficient and simple method for diazotization- thiocyanation of aryl amine using cross-linked poly (4-vinylpyridine) supported thiocyanate ion, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 1226-1235.
-
[9] (a) M.A. Zolfigol, A. Khazaei, M. Mokhlesi, et al., Heterogeneous and catalytic thiocyanation of aromatic compounds in aqueous media, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 295-304;[9] (a) M.A. Zolfigol, A. Khazaei, M. Mokhlesi, et al., Heterogeneous and catalytic thiocyanation of aromatic compounds in aqueous media, Phosphorus Sulfur Silicon Relat. Elem. 187 (2012) 295-304;
-
[22]
(b) A. Khazaei, M.A. Zolfigol, M. Mokhlesi, F. Derakhshan Panah, S. Sajadifar, Simple and highly efficient catalytic thiocyanation of aromatic compounds in aqueous media, Helv. Chim. Acta 95 (2012) 106-114;(b) A. Khazaei, M.A. Zolfigol, M. Mokhlesi, F. Derakhshan Panah, S. Sajadifar, Simple and highly efficient catalytic thiocyanation of aromatic compounds in aqueous media, Helv. Chim. Acta 95 (2012) 106-114;
-
[23]
(c) A. Khazaei, M.A. Zolfigol, M. Safaiee, et al., Silica-bonded vanadic acid[SiO2-VO(OH)2] as a heterogeneous and recyclable catalyst for thiocyanation of organic compounds in aqueous media at room temperature, Catal. Commun. 26 (2012) 34-38.(c) A. Khazaei, M.A. Zolfigol, M. Safaiee, et al., Silica-bonded vanadic acid[SiO2-VO(OH)2] as a heterogeneous and recyclable catalyst for thiocyanation of organic compounds in aqueous media at room temperature, Catal. Commun. 26 (2012) 34-38.
-
[10] L. Wu, S. Chao, X. Wang, F. Yan, Poly[4-diacetoxyiodo] styrene-promoted thiocyanation of aromatic ethers, anilines, and indoles, Phosphorus Sulfur Silicon Relat. Elem. 186 (2011) 304-310.[10] L. Wu, S. Chao, X. Wang, F. Yan, Poly[4-diacetoxyiodo] styrene-promoted thiocyanation of aromatic ethers, anilines, and indoles, Phosphorus Sulfur Silicon Relat. Elem. 186 (2011) 304-310.
-
[11] Y.L.N. Murthy, B. Govindh, B.S. Diwakar, K. Nagalakshmi, R. Venu, Microwaveassisted neat reaction technology for regioselective thiocyanation of substituted anilines and indoles in solid media, J. Iran. Chem. Soc. 8 (2011) 292-297.[11] Y.L.N. Murthy, B. Govindh, B.S. Diwakar, K. Nagalakshmi, R. Venu, Microwaveassisted neat reaction technology for regioselective thiocyanation of substituted anilines and indoles in solid media, J. Iran. Chem. Soc. 8 (2011) 292-297.
-
[12] O. Parkash, H. Kaur, R. Pundeer, R.S. Dhillon, S.P. Singh, An improved iodine(III) mediated method for thiocyanation of 2-arylindan-1,3-diones, phenols, and anilines, Synth. Commun. 33 (2003) 4037-4042.[12] O. Parkash, H. Kaur, R. Pundeer, R.S. Dhillon, S.P. Singh, An improved iodine(III) mediated method for thiocyanation of 2-arylindan-1,3-diones, phenols, and anilines, Synth. Commun. 33 (2003) 4037-4042.
-
[13] X.Q. Pan, M.Y. Lei, J.P. Zou, W. Zhang, Mn(OAc)3-promoted regioselective free radical thiocyanation of indoles and anilines, Tetrahedron Lett. 50 (2009) 347-349.[13] X.Q. Pan, M.Y. Lei, J.P. Zou, W. Zhang, Mn(OAc)3-promoted regioselective free radical thiocyanation of indoles and anilines, Tetrahedron Lett. 50 (2009) 347-349.
-
[14] (a) H.R. Memarian, I. Mohammadpoor-Baltork, K. Nikoofar, DDQ-promoted thiocyanation of aromatic and heteroaromatic compounds, Can. J. Chem. 85 (2007) 930-937;[14] (a) H.R. Memarian, I. Mohammadpoor-Baltork, K. Nikoofar, DDQ-promoted thiocyanation of aromatic and heteroaromatic compounds, Can. J. Chem. 85 (2007) 930-937;
-
[29]
(b) H.R. Memraian, I. Mohammadpoor-Baltork, K. Nikoofar, Ultrasound-assisted thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and DDQ, Ultrason. Sonochem. 15 (2008) 456-462.(b) H.R. Memraian, I. Mohammadpoor-Baltork, K. Nikoofar, Ultrasound-assisted thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and DDQ, Ultrason. Sonochem. 15 (2008) 456-462.
-
[15] (a) L. Fotouhi, K. Nikoofar, Electrochemical thiocyanation of nitrogen-containing aromatic and heteroaromatic compounds, Tetrahedron Lett. 54 (2013) 2903- 2905;[15] (a) L. Fotouhi, K. Nikoofar, Electrochemical thiocyanation of nitrogen-containing aromatic and heteroaromatic compounds, Tetrahedron Lett. 54 (2013) 2903- 2905;
-
[31]
(b) A. Gitkis, J.Y. Becker, A selective one-pot electrochemical thiocyanation of methoxybenzene (anisole), Electroanal. Chem. 593 (2006) 29-33;(b) A. Gitkis, J.Y. Becker, A selective one-pot electrochemical thiocyanation of methoxybenzene (anisole), Electroanal. Chem. 593 (2006) 29-33;
-
[32]
(c) A. Gitkis, J.Y. Becker, Anodic thiocyanation of mono- and disubstituted aromatic compounds, Electrochim. Acta 55 (2010) 5854-5859.(c) A. Gitkis, J.Y. Becker, Anodic thiocyanation of mono- and disubstituted aromatic compounds, Electrochim. Acta 55 (2010) 5854-5859.
-
[16] B. Akhlaghinia, A.R. Pourali, M. Rahmani, Efficient and novel method for thiocyanation of aromatic compounds using trichloroisocyanuric acid/ammonium thiocyanate/wet SiO2, Synth. Commun. 42 (2012) 1184.[16] B. Akhlaghinia, A.R. Pourali, M. Rahmani, Efficient and novel method for thiocyanation of aromatic compounds using trichloroisocyanuric acid/ammonium thiocyanate/wet SiO2, Synth. Commun. 42 (2012) 1184.
-
[17] (a) X.F. Wu, A. Petrosyan, T.V. Ghochikyan, A.S. Saghyan, P. Langer, Metal-free oxidation of benzyl amines to imines, Tetrahedron Lett. 54 (2013) 3158-3159;[17] (a) X.F. Wu, A. Petrosyan, T.V. Ghochikyan, A.S. Saghyan, P. Langer, Metal-free oxidation of benzyl amines to imines, Tetrahedron Lett. 54 (2013) 3158-3159;
-
[35]
(b) R. Rajabi, A. Pineda, S. Naserian, et al., Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates, Green Chem. 15 (2013) 1232-1237;(b) R. Rajabi, A. Pineda, S. Naserian, et al., Aqueous oxidation of alcohols catalysed by recoverable iron oxide nanoparticles supported on aluminosilicates, Green Chem. 15 (2013) 1232-1237;
-
[36]
(c) L. Bedrač, J. Iskra, Iodine(I) reagents in hydrochloric acid-catalyzed oxidative iodination of aromatic compounds by hydrogen peroxide and iodine, Adv. Synth. Catal. 355 (2013) 1243-1248;(c) L. Bedrač, J. Iskra, Iodine(I) reagents in hydrochloric acid-catalyzed oxidative iodination of aromatic compounds by hydrogen peroxide and iodine, Adv. Synth. Catal. 355 (2013) 1243-1248;
-
[37]
(d) A. Rostami, Y. Navasi, D. Moradi, A. Ghorbani-Choghamarani, DABCO tribromide immobilized on magnetic nanoparticle as a recyclable catalyst for the chemoselective oxidation of sulfide using H2O2 under metal- and solvent-free conditions, Catal. Commun. 43 (2014) 16-20;(d) A. Rostami, Y. Navasi, D. Moradi, A. Ghorbani-Choghamarani, DABCO tribromide immobilized on magnetic nanoparticle as a recyclable catalyst for the chemoselective oxidation of sulfide using H2O2 under metal- and solvent-free conditions, Catal. Commun. 43 (2014) 16-20;
-
[38]
(e) J. Ju, Y.J. Li, J.R. Gao, et al., High selectively bromination of toluene derivatives by the H2O2-HBr system, Chin. Chem. Lett. 22 (2011) 382-384;(e) J. Ju, Y.J. Li, J.R. Gao, et al., High selectively bromination of toluene derivatives by the H2O2-HBr system, Chin. Chem. Lett. 22 (2011) 382-384;
-
[39]
(f) H.Y. Guo, J.C. Li, Y.L. Sheng, A simple and efficient synthesis of 2-substituted benzothiazoles catalysed by H2O2/HCl, Chin. Chem. Lett. 20 (2009) 1408-1410.(f) H.Y. Guo, J.C. Li, Y.L. Sheng, A simple and efficient synthesis of 2-substituted benzothiazoles catalysed by H2O2/HCl, Chin. Chem. Lett. 20 (2009) 1408-1410.
-
[18] (a) Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys. 36 (2003) R167-R181;[18] (a) Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys. 36 (2003) R167-R181;
-
[41]
(b) A.K. Gupta, A.S.G. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture, J. Mater. Sci. Mater. Med. 15 (2004) 493-496;(b) A.K. Gupta, A.S.G. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture, J. Mater. Sci. Mater. Med. 15 (2004) 493-496;
-
[42]
(c) T. Neuberger, B. Schoepf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater. 293 (2005) 483-496.(c) T. Neuberger, B. Schoepf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater. 293 (2005) 483-496.
-
[19] (a) V. Polshettiwar, R. Luque, A. Fihri, et al., Magnetically recoverable nanocatalysts, Chem. Rev. 111 (2011) 3036-3075;[19] (a) V. Polshettiwar, R. Luque, A. Fihri, et al., Magnetically recoverable nanocatalysts, Chem. Rev. 111 (2011) 3036-3075;
-
[44]
(b) Y. Li, Y.J. Kim, A.Y. Kim, et al., Highly stable and magnetically recyclable mesoporous silica spheres embedded with FeCo/graphitic shell nanocrystals for supported catalysts, Chem. Mater. 23 (2011) 5398-5403;(b) Y. Li, Y.J. Kim, A.Y. Kim, et al., Highly stable and magnetically recyclable mesoporous silica spheres embedded with FeCo/graphitic shell nanocrystals for supported catalysts, Chem. Mater. 23 (2011) 5398-5403;
-
[45]
(c) J.M. Yan, X.B. Zhang, T. Akita, M. Haruta, Q. Xu, One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane, J. Am. Chem. Soc. 132 (2010) 5326-5327;(c) J.M. Yan, X.B. Zhang, T. Akita, M. Haruta, Q. Xu, One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane, J. Am. Chem. Soc. 132 (2010) 5326-5327;
-
[46]
(d) N. Panda, A.K. Jena, S. Mohapatra, Heterogeneous magnetic catalyst for S-arylation reactions, Appl. Catal A: Gen. 433 (2012) 258-264;(d) N. Panda, A.K. Jena, S. Mohapatra, Heterogeneous magnetic catalyst for S-arylation reactions, Appl. Catal A: Gen. 433 (2012) 258-264;
-
[47]
(e) B. Karami, S.J. Hoseini, S. Nikoseresht, S. Khodabakhshi, Fe3O4 nanoparticles: a powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett. 23 (2012) 173-176.(e) B. Karami, S.J. Hoseini, S. Nikoseresht, S. Khodabakhshi, Fe3O4 nanoparticles: a powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett. 23 (2012) 173-176.
-
[20] (a) C. Yang, J. Wu, Y. Hou, Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications, Chem. Commun. 47 (2011) 5130-5141;[20] (a) C. Yang, J. Wu, Y. Hou, Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications, Chem. Commun. 47 (2011) 5130-5141;
-
[49]
(b) D. Cantillo, M. Mirhosseini Moghaddam, C.O. Kappe, Hydrazine-mediated reduction of nitro and azide functionalities catalyzed by highly active and reusable magnetic iron oxide nanocrystals, J. Org. Chem. 78 (2013) 4530-4542;(b) D. Cantillo, M. Mirhosseini Moghaddam, C.O. Kappe, Hydrazine-mediated reduction of nitro and azide functionalities catalyzed by highly active and reusable magnetic iron oxide nanocrystals, J. Org. Chem. 78 (2013) 4530-4542;
-
[50]
(c) T. Alishiri, H.A. Oskooei, M.M. Heravi, Fe3O4 nanoparticles as an efficient and magnetically recoverable catalyst for the synthesis of α,β-unsaturated heterocyclic and cyclic ketones under solvent-free conditions, Synth. Commun. 43 (2014) 3357-3362;(c) T. Alishiri, H.A. Oskooei, M.M. Heravi, Fe3O4 nanoparticles as an efficient and magnetically recoverable catalyst for the synthesis of α,β-unsaturated heterocyclic and cyclic ketones under solvent-free conditions, Synth. Commun. 43 (2014) 3357-3362;
-
[51]
(d) K. Kamal, S.M. Sajadi, An efficient synthesis of thiotetrazoles using Fe3O4 nanoparticles as a magnetically recoverable and reusable catalyst, Lett. Org. Chem. 10 (2013) 688-692.(d) K. Kamal, S.M. Sajadi, An efficient synthesis of thiotetrazoles using Fe3O4 nanoparticles as a magnetically recoverable and reusable catalyst, Lett. Org. Chem. 10 (2013) 688-692.
-
[21] (a) N. Iranpoor, H. Firouzabadi, D. Khalili, R. Shahin, A new application for diethyl azodicarboxylate: efficient and regioselective thiocyanation of aromatics amines, Tetrahedron Lett. 51 (2010) 3508-3510;[21] (a) N. Iranpoor, H. Firouzabadi, D. Khalili, R. Shahin, A new application for diethyl azodicarboxylate: efficient and regioselective thiocyanation of aromatics amines, Tetrahedron Lett. 51 (2010) 3508-3510;
-
[53]
(b) N. Iranpoor, H. Firouzabadi, R. Shahin, D. Khalili, 2,2'-Azobenzthiazole as a new recyclable oxidant for heterogeneous thiocyanation of aromatic compounds with ammonium thiocyanate, Synth. Commun. 42 (2012) 2040-2047.(b) N. Iranpoor, H. Firouzabadi, R. Shahin, D. Khalili, 2,2'-Azobenzthiazole as a new recyclable oxidant for heterogeneous thiocyanation of aromatic compounds with ammonium thiocyanate, Synth. Commun. 42 (2012) 2040-2047.
-
[22] For the preparation of nanomagnetic Fe3O4, see: V. Polshettiwar, B. Baruwati, R.S. Varma, Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol, Green Chem. 11 (2009) 127-131.[22] For the preparation of nanomagnetic Fe3O4, see: V. Polshettiwar, B. Baruwati, R.S. Varma, Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol, Green Chem. 11 (2009) 127-131.
-
[23] H. Sharghi, S. Ebrahimpourmoghaddam, M.M. Doroodmand, Facile synthesis of 5-substituted-1H-tetrazoles and 1-substituted-1H-tetrazoles catalyzed by recyclable 4'-phenyl-2,2':6',2"-terpyridine copper (II) complex immobilized onto activated multi-walled carbon nanotubes, J. Organomet. Chem. 738 (2013) 41-48.[23] H. Sharghi, S. Ebrahimpourmoghaddam, M.M. Doroodmand, Facile synthesis of 5-substituted-1H-tetrazoles and 1-substituted-1H-tetrazoles catalyzed by recyclable 4'-phenyl-2,2':6',2"-terpyridine copper (II) complex immobilized onto activated multi-walled carbon nanotubes, J. Organomet. Chem. 738 (2013) 41-48.
-
[24] (a) G. Wu, Q. Liu, Y. Shen, W. Wu, L. Wu, Regioselective thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and oxone, Tetrahedron Lett. 46 (2005) 5831-5834;[24] (a) G. Wu, Q. Liu, Y. Shen, W. Wu, L. Wu, Regioselective thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and oxone, Tetrahedron Lett. 46 (2005) 5831-5834;
-
[57]
(b) U.S. Mahajan, K.G. Akamanchi, Facile method for thiocyanation of activated arenes using iodic acid in combination with ammonium thiocyanate, Synth. Commun. 39 (2009) 2674-2682;(b) U.S. Mahajan, K.G. Akamanchi, Facile method for thiocyanation of activated arenes using iodic acid in combination with ammonium thiocyanate, Synth. Commun. 39 (2009) 2674-2682;
-
[58]
(c) B. Das, A.S. Kumar, Efficient thiocyanation of indoles using para-toluene sulfonic acid, Synth. Commun. 40 (2010) 337-341;(c) B. Das, A.S. Kumar, Efficient thiocyanation of indoles using para-toluene sulfonic acid, Synth. Commun. 40 (2010) 337-341;
-
[59]
(d) A. Shuji, M. Egi, K. Lio, et al., An efficient p-thiocyanation of phenols and naphtols using a reagent combination of phenyliodine dichloride and lead(II) thiocyanate, Chem. Pharm. Bull. 45 (1997) 1887-1890.(d) A. Shuji, M. Egi, K. Lio, et al., An efficient p-thiocyanation of phenols and naphtols using a reagent combination of phenyliodine dichloride and lead(II) thiocyanate, Chem. Pharm. Bull. 45 (1997) 1887-1890.
-
[25] (a) M.A. Zolfigol, V. Khakyzadeh, A.H. Moosavi-Zare, et al., Nano-Fe3O4/O2: green, magnetic and reusable catalytic system for the synthesis of benzimidazoles, S. Afr. J. Chem. 65 (2012) 280;[25] (a) M.A. Zolfigol, V. Khakyzadeh, A.H. Moosavi-Zare, et al., Nano-Fe3O4/O2: green, magnetic and reusable catalytic system for the synthesis of benzimidazoles, S. Afr. J. Chem. 65 (2012) 280;
-
[61]
(b) R. Parella, N. Srinivasarao, A. Babu, Magnetic nano Fe3O4 and CuFe2O4 as heterogeneous catalysts: a green method for the stereo- and regioselective reactions of epoxides with indoles/pyrroles, Catal. Commun. 29 (2012) 118-121;(b) R. Parella, N. Srinivasarao, A. Babu, Magnetic nano Fe3O4 and CuFe2O4 as heterogeneous catalysts: a green method for the stereo- and regioselective reactions of epoxides with indoles/pyrroles, Catal. Commun. 29 (2012) 118-121;
-
[62]
(c) B. Karami, S.J. Hoseini, S. Nikoseresht, S. Khodabakhshi, Fe3O4 nanoparticles: a powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett. 23 (2012) 173-176;(c) B. Karami, S.J. Hoseini, S. Nikoseresht, S. Khodabakhshi, Fe3O4 nanoparticles: a powerful and magnetically recoverable catalyst for the synthesis of novel calix[4]resorcinarenes, Chin. Chem. Lett. 23 (2012) 173-176;
-
[63]
(d) M.M. Mojtahedi, M.S. Abaee, A. Rajabi, P. Mahmoodi, S. Bagherpoor, Recyclable superparamagnetic Fe3O4 nanoparticles for efficient catalysis of thiolysis of epoxides, J. Mol. Catal. A: Chem. 361 (2012) 68-71;(d) M.M. Mojtahedi, M.S. Abaee, A. Rajabi, P. Mahmoodi, S. Bagherpoor, Recyclable superparamagnetic Fe3O4 nanoparticles for efficient catalysis of thiolysis of epoxides, J. Mol. Catal. A: Chem. 361 (2012) 68-71;
-
[64]
(e) R. Cano, M. Yus, D.J. Ramon, Catalyzed addition of acid chlorides to alkynes by unmodified nano-powder magnetite: synthesis of chlorovinyl ketones, furans, and related cyclopentenone derivatives, Tetrahedron 69 (2013) 7056-7065.(e) R. Cano, M. Yus, D.J. Ramon, Catalyzed addition of acid chlorides to alkynes by unmodified nano-powder magnetite: synthesis of chlorovinyl ketones, furans, and related cyclopentenone derivatives, Tetrahedron 69 (2013) 7056-7065.
-
[26] (a) I.R.Wilson, G.M. Harris, The oxidation of thiocyanate ion by hydrogen peroxide: I. The pH-independent reaction, J. Am. Chem. Soc. 82 (1960) 4515-4517;[26] (a) I.R.Wilson, G.M. Harris, The oxidation of thiocyanate ion by hydrogen peroxide: I. The pH-independent reaction, J. Am. Chem. Soc. 82 (1960) 4515-4517;
-
[66]
(b) J.N. Figlar, D.M. Stanbury, Thiocyanogen as an intermediate in the oxidation of thiocyanate by hydrogen peroxide in acidic aqueous solution, Inorg. Chem. 39 (2000) 5089-5094;(b) J.N. Figlar, D.M. Stanbury, Thiocyanogen as an intermediate in the oxidation of thiocyanate by hydrogen peroxide in acidic aqueous solution, Inorg. Chem. 39 (2000) 5089-5094;
-
[67]
(c) J.J. Barnett, D.M. Stanbury, Formation of trithiocyanate in the oxidation of aqueous thiocyanate, Inorg. Chem. 41 (2002) 164-166;(c) J.J. Barnett, D.M. Stanbury, Formation of trithiocyanate in the oxidation of aqueous thiocyanate, Inorg. Chem. 41 (2002) 164-166;
-
[68]
(d) P. Nagy, K. Lemma, M.T. Ashby, Kinetics and mechanism of the comproportionation of hypothiocyanous acid and thiocyanate to give thiocyanogen in acidic aqueous solution, Inorg. Chem. 46 (2007) 285-292.(d) P. Nagy, K. Lemma, M.T. Ashby, Kinetics and mechanism of the comproportionation of hypothiocyanous acid and thiocyanate to give thiocyanogen in acidic aqueous solution, Inorg. Chem. 46 (2007) 285-292.
-
-

计量
- PDF下载量: 0
- 文章访问数: 967
- HTML全文浏览量: 15