A facile preparation and electrochemical properties of nickel based compound-graphene sheet composites for supercapacitors

Li-Bin Zhang Sheng-Rong Yang Jin-Qing Wang Ye Xu Xiang-Zheng Kong

Citation:  Li-Bin Zhang, Sheng-Rong Yang, Jin-Qing Wang, Ye Xu, Xiang-Zheng Kong. A facile preparation and electrochemical properties of nickel based compound-graphene sheet composites for supercapacitors[J]. Chinese Chemical Letters, 2015, 26(5): 522-528. doi: 10.1016/j.cclet.2015.01.025 shu

A facile preparation and electrochemical properties of nickel based compound-graphene sheet composites for supercapacitors

    通讯作者: Sheng-Rong Yang,
    Xiang-Zheng Kong,
  • 基金项目:

    This study has been financially supported by National Natural Science Foundation of China (No. 51075384). (No. 51075384)

摘要: Composites of a nickel based compound incorporated with graphene sheets (NiBC-GS) are prepared by a simple flocculation, using hydrazine hydrate as flocculant and reductant, from a homogeneous intermixture of nickel dichloride and graphene oxide dispersed in N,N-dimethylformamide. Morphology, microstructure and thermal stability of the obtained products were characterized by field-emission scanning electron microscopy, X-ray diffraction and thermal gravimetric analysis. Furthermore, the electrochemical properties of NiBC-GS, as electrodematerials for supercapacitors, were studied by cyclic voltammetry and galvanostatic charge/discharge in 2 mol L-1 KOH solution. It was determined that for NiBC-GS annealed at 250 8C, a high specific capacitance of 2394 F g-1 was achieved at a current density of 1 A g-1, with 78% of the value (i.e., 1864 F g-1) retained after 5000 times of repeated galvanostatic charge/discharge cycling. The high specific capacitance and available charge/discharge stability indicate the synthesized NiBC-GS250 composite is a good candidate as a novel electrode material for supercapacitors.

English

    1. [1] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors, Chem. Rev. 104 (2004) 4245-4269.[1] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors, Chem. Rev. 104 (2004) 4245-4269.

    2. [2] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531.[2] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531.

    3. [3] M.X. Liu, L. Gan, Y. Li, et al., Synthesis and electrochemical performance of hierarchical porous carbons with 3D open-cell structure based on nanosilicaembedded emulsion-templated polymerization, Chin. Chem. Lett. 25 (2014) 897- 901.[3] M.X. Liu, L. Gan, Y. Li, et al., Synthesis and electrochemical performance of hierarchical porous carbons with 3D open-cell structure based on nanosilicaembedded emulsion-templated polymerization, Chin. Chem. Lett. 25 (2014) 897- 901.

    4. [4] Y. Xiao, C. Long, M.T. Zheng, et al., High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors, Chin. Chem. Lett. 25 (2014) 865-868.[4] Y. Xiao, C. Long, M.T. Zheng, et al., High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors, Chin. Chem. Lett. 25 (2014) 865-868.

    5. [5] H.M. Zhang, X.H. Wang, Eco-friendly water-borne conducting polyaniline, Chin. J. Polym. Sci. 31 (2013) 853-869.[5] H.M. Zhang, X.H. Wang, Eco-friendly water-borne conducting polyaniline, Chin. J. Polym. Sci. 31 (2013) 853-869.

    6. [6] G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828.[6] G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828.

    7. [7] L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo, Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors, Chin. Chem. Lett. 25 (2014) 957-961.[7] L. Kang, S.X. Sun, L.B. Kong, J.W. Lang, Y.C. Luo, Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors, Chin. Chem. Lett. 25 (2014) 957-961.

    8. [8] P. Miró,M. Audiffred, T. Heine, An atlas of two-dimensional materials, Chem. Soc. Rev. 43 (2014) 6537-6554.[8] P. Miró,M. Audiffred, T. Heine, An atlas of two-dimensional materials, Chem. Soc. Rev. 43 (2014) 6537-6554.

    9. [9] Y. Wang, Z.Q. Shi, Y. Huang, et al., Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113 (2009) 13103-13107.[9] Y. Wang, Z.Q. Shi, Y. Huang, et al., Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113 (2009) 13103-13107.

    10. [10] H.M. Sun, L.Y. Cao, L.H. Lu, Bacteria promoted hierarchical carbon materials for high-performance supercapacitor, Energy Environ. Sci. 5 (2012) 6206-6213.[10] H.M. Sun, L.Y. Cao, L.H. Lu, Bacteria promoted hierarchical carbon materials for high-performance supercapacitor, Energy Environ. Sci. 5 (2012) 6206-6213.

    11. [11] J.T. Zhang, J.W. Jiang, H.L. Li, X.S. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes, Energy Environ. Sci. 4 (2011) 4009-4015.[11] J.T. Zhang, J.W. Jiang, H.L. Li, X.S. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes, Energy Environ. Sci. 4 (2011) 4009-4015.

    12. [12] C.X. Guo, C.M. Li, A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance, Energy Environ. Sci. 4 (2011) 4504-4507.[12] C.X. Guo, C.M. Li, A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance, Energy Environ. Sci. 4 (2011) 4504-4507.

    13. [13] B.H. Kim, K.S. Yang, H.G. Woo, Boron-nitrogen functional groups on porous nanocarbon fibers for electrochemical supercapacitors, Mater. Lett. 93 (2013) 190-193.[13] B.H. Kim, K.S. Yang, H.G. Woo, Boron-nitrogen functional groups on porous nanocarbon fibers for electrochemical supercapacitors, Mater. Lett. 93 (2013) 190-193.

    14. [14] W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40 (2011) 1697-1721.[14] W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40 (2011) 1697-1721.

    15. [15] V. Khomenko, E. Raymundo-Pinero, F. Beguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium, J. Power Sources 153 (2006) 183-190.[15] V. Khomenko, E. Raymundo-Pinero, F. Beguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium, J. Power Sources 153 (2006) 183-190.

    16. [16] F.P. Zhao, Y.Y. Wang, X.N. Xu, et al., Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material, ACS Appl. Mater. Interf. 6 (2014) 11007-11012.[16] F.P. Zhao, Y.Y. Wang, X.N. Xu, et al., Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material, ACS Appl. Mater. Interf. 6 (2014) 11007-11012.

    17. [17] L.B. Kong, J.W. Lang, M. Liu, Y.C. Luo, L. Kang, Facile approach to prepare loosepacked cobalt hydroxide nano-flakes materials for electrochemical capacitors, J. Power Sources 194 (2009) 1194-1201.[17] L.B. Kong, J.W. Lang, M. Liu, Y.C. Luo, L. Kang, Facile approach to prepare loosepacked cobalt hydroxide nano-flakes materials for electrochemical capacitors, J. Power Sources 194 (2009) 1194-1201.

    18. [18] H. Jiang, T. Zhao, C.Z. Li, J. Ma, Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors, J. Mater. Chem. 21 (2011) 3818-3823.[18] H. Jiang, T. Zhao, C.Z. Li, J. Ma, Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors, J. Mater. Chem. 21 (2011) 3818-3823.

    19. [19] J. Cheng, G.P. Cao, Y.S. Yang, Characterization of sol-gel-derived NiOx xerogels as supercapacitors, J. Power Sources 159 (2006) 734-741.[19] J. Cheng, G.P. Cao, Y.S. Yang, Characterization of sol-gel-derived NiOx xerogels as supercapacitors, J. Power Sources 159 (2006) 734-741.

    20. [20] J. Chang, J. Sun, C.H. Xu, H. Xu, L. Gao, Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors, Nanoscale 4 (2012) 6786-6791.[20] J. Chang, J. Sun, C.H. Xu, H. Xu, L. Gao, Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors, Nanoscale 4 (2012) 6786-6791.

    21. [21] Y. Wang, I. Zhitomirsky, Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors, Langmuir 25 (2009) 9684-9689.[21] Y. Wang, I. Zhitomirsky, Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors, Langmuir 25 (2009) 9684-9689.

    22. [22] H. Chen, S.X. Zhou, L.M. Wu, Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials, ACS Appl. Mater. Interf. 6 (2014) 8621-8630.[22] H. Chen, S.X. Zhou, L.M. Wu, Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials, ACS Appl. Mater. Interf. 6 (2014) 8621-8630.

    23. [23] Y. Huang, X.L. Huang, J.S. Lian, et al., Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage, J. Mater. Chem. 22 (2012) 2844-2847.[23] Y. Huang, X.L. Huang, J.S. Lian, et al., Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage, J. Mater. Chem. 22 (2012) 2844-2847.

    24. [24] J. Yan, W. Sun, T. Wei, et al., Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets, J. Mater. Chem. 22 (2012) 11494-11502.[24] J. Yan, W. Sun, T. Wei, et al., Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets, J. Mater. Chem. 22 (2012) 11494-11502.

    25. [25] Z.H. Tang, B.C. Guo, L.Q. Zhang, D.M. Jia, Graphene-rubber nanocomposites, Acta Polym. Sin. (7) (2014) 865-877.[25] Z.H. Tang, B.C. Guo, L.Q. Zhang, D.M. Jia, Graphene-rubber nanocomposites, Acta Polym. Sin. (7) (2014) 865-877.

    26. [26] X. Huang, X.Y. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41 (2012) 666-686.[26] X. Huang, X.Y. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41 (2012) 666-686.

    27. [27] H.W. Wang, Z.A. Hu, Y.Q. Chang, et al., Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors, J. Mater. Chem. 21 (2011) 10504-10511.[27] H.W. Wang, Z.A. Hu, Y.Q. Chang, et al., Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors, J. Mater. Chem. 21 (2011) 10504-10511.

    28. [28] Y. Cao, Q.M. Su, R.C. Che, G.H. Du, B.S. Xu, One-step chemical vapor synthesis of Ni/graphene nanocomposites with excellent electromagnetic and electrocatalytic properties, Synth. Met. 162 (2012) 968-973.[28] Y. Cao, Q.M. Su, R.C. Che, G.H. Du, B.S. Xu, One-step chemical vapor synthesis of Ni/graphene nanocomposites with excellent electromagnetic and electrocatalytic properties, Synth. Met. 162 (2012) 968-973.

    29. [29] S.B. Yang, X.L. Wu, C.L. Chen, et al., Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials, Chem. Commun. 48 (2012) 2773-2775.[29] S.B. Yang, X.L. Wu, C.L. Chen, et al., Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials, Chem. Commun. 48 (2012) 2773-2775.

    30. [30] H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc. 132 (2010) 7472-7477.[30] H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc. 132 (2010) 7472-7477.

    31. [31] L.B. Zhang, J.Q. Wang, H.G. Wang, et al., Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites, Compos., A: Appl. Sci. Manuf. 43 (2012) 1537-1545.[31] L.B. Zhang, J.Q. Wang, H.G. Wang, et al., Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites, Compos., A: Appl. Sci. Manuf. 43 (2012) 1537-1545.

    32. [32] L.B. Zhang, J.Q. Wang, S.R. Yang, X.Z. Kong, Preparation and characterization of graphene sheet-polyimide nanocomposite films, Acta Polym. Sin. (2014) 1472- 1478.[32] L.B. Zhang, J.Q. Wang, S.R. Yang, X.Z. Kong, Preparation and characterization of graphene sheet-polyimide nanocomposite films, Acta Polym. Sin. (2014) 1472- 1478.

    33. [33] J.W. Park, E.H. Chae, S.H. Kim, et al., Preparation of fine Ni powders from nickel hydrazine complex, Mater. Chem. Phys. 97 (2006) 371-378.[33] J.W. Park, E.H. Chae, S.H. Kim, et al., Preparation of fine Ni powders from nickel hydrazine complex, Mater. Chem. Phys. 97 (2006) 371-378.

    34. [34] D. Nicholls, R. Swindells, Hydrazine complexes of nickel(II) chloride, J. Inorg. Nucl. Chem. 30 (1968) 2211-2217.[34] D. Nicholls, R. Swindells, Hydrazine complexes of nickel(II) chloride, J. Inorg. Nucl. Chem. 30 (1968) 2211-2217.

    35. [35] C. Furlani, G. Mattogno, A. Monaci, F. Tarli, Ligand field spectra of hydrazine complexes of Ni(II) and the spectrochemical position of hydrazine, Inorg. Chim. Acta 4 (1970) 187-191.[35] C. Furlani, G. Mattogno, A. Monaci, F. Tarli, Ligand field spectra of hydrazine complexes of Ni(II) and the spectrochemical position of hydrazine, Inorg. Chim. Acta 4 (1970) 187-191.

    36. [36] G.Y. Huang, S.M. Xu, G. Xu, L.Y. Li, L.F. Zhang, Preparation of fine nickel powders via reduction of nickel hydrazine complex precursors, Trans. Nonferrous Met. Soc. China 19 (2009) 389-393.[36] G.Y. Huang, S.M. Xu, G. Xu, L.Y. Li, L.F. Zhang, Preparation of fine nickel powders via reduction of nickel hydrazine complex precursors, Trans. Nonferrous Met. Soc. China 19 (2009) 389-393.

    37. [37] B. Banerjee, P.K. Biswas, N.R. Chaudhuri, Thermal studies of nickel(II) hydrazine complexes in solid state, Bull. Chem. Soc. Jpn. 56 (1983) 2509- 2517.[37] B. Banerjee, P.K. Biswas, N.R. Chaudhuri, Thermal studies of nickel(II) hydrazine complexes in solid state, Bull. Chem. Soc. Jpn. 56 (1983) 2509- 2517.

    38. [38] A. Leineweber, H. Jacobs, Preparation and crystal structures of Ni(NH3)2Cl2 and of two modifications of Ni(NH3)2Br2 and Ni(NH3)2I2, J. Solid State Chem. 152 (2000) 381-387.[38] A. Leineweber, H. Jacobs, Preparation and crystal structures of Ni(NH3)2Cl2 and of two modifications of Ni(NH3)2Br2 and Ni(NH3)2I2, J. Solid State Chem. 152 (2000) 381-387.

    39. [39] K.S. Rejitha, S. Mathew, Thermal behaviour of nickel(II) sulphate, nitrate and halide complexes containing ammine and ethylenediamine as ligands, J. Therm. Anal. Calorim. 106 (2011) 267-275.[39] K.S. Rejitha, S. Mathew, Thermal behaviour of nickel(II) sulphate, nitrate and halide complexes containing ammine and ethylenediamine as ligands, J. Therm. Anal. Calorim. 106 (2011) 267-275.

    40. [40] L. Guo, C.M. Liu, R.M. Wang, et al., Large-scale synthesis of uniform nanotubes of a nickel complex by a solution chemical route, J. Am. Chem. Soc. 126 (2004) 4530- 4531.[40] L. Guo, C.M. Liu, R.M. Wang, et al., Large-scale synthesis of uniform nanotubes of a nickel complex by a solution chemical route, J. Am. Chem. Soc. 126 (2004) 4530- 4531.

    41. [41] S. Kulaksizoğlu, C. Gökçe, R. Gup, Asymmetric bis(bidentate) azine ligand and transition metal complexes: synthesis, characterization, DNA-binding and cleavage studies and extraction properties for selected metals and dichromate anions, J. Chil. Chem. Soc. 57 (2012) 1213-1218.[41] S. Kulaksizoğlu, C. Gökçe, R. Gup, Asymmetric bis(bidentate) azine ligand and transition metal complexes: synthesis, characterization, DNA-binding and cleavage studies and extraction properties for selected metals and dichromate anions, J. Chil. Chem. Soc. 57 (2012) 1213-1218.

    42. [42] M.S. Wu, K.C. Huang, Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors, Chem. Commun. 47 (2011) 12122-12124.[42] M.S. Wu, K.C. Huang, Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors, Chem. Commun. 47 (2011) 12122-12124.

    43. [43] J.W. Lang, L.B. Kong, W.J. Wu, et al., A facile approach to the preparation of loosepacked Ni(OH)2 nanoflake materials for electrochemical capacitors, J. Solid State Electrochem. 13 (2009) 333-340.[43] J.W. Lang, L.B. Kong, W.J. Wu, et al., A facile approach to the preparation of loosepacked Ni(OH)2 nanoflake materials for electrochemical capacitors, J. Solid State Electrochem. 13 (2009) 333-340.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  881
  • HTML全文浏览量:  4
文章相关
  • 发布日期:  2015-01-31
  • 收稿日期:  2014-11-24
  • 网络出版日期:  2015-01-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章