
Design, synthesis, and insecticidal bioactivities evaluation of pyrrole- and dihydropyrrole-fused neonicotinoid analogs containing chlorothiazole ring
-
关键词:
- Neonicotinoid
- / Pyrrole
- / Dihydropyrrole
- / Insecticidal activity
English
Design, synthesis, and insecticidal bioactivities evaluation of pyrrole- and dihydropyrrole-fused neonicotinoid analogs containing chlorothiazole ring
-
Key words:
- Neonicotinoid
- / Pyrrole
- / Dihydropyrrole
- / Insecticidal activity
-
-
-
[1] S. Kagabu, Discovery of imidacloprid and further developments from strategic molecular designs, J. Agric. Food Chem. 59 (2011) 2887-2896.[1] S. Kagabu, Discovery of imidacloprid and further developments from strategic molecular designs, J. Agric. Food Chem. 59 (2011) 2887-2896.
-
[2] I. Ohno,M. Tomizawa, K.A. Durkin, et al., Bis-neonicotinoid insecticides: observed and predicted binding interactions with the nicotinic receptor, Bioorg. Med. Chem. Lett. 19 (2009) 3449-3452.[2] I. Ohno,M. Tomizawa, K.A. Durkin, et al., Bis-neonicotinoid insecticides: observed and predicted binding interactions with the nicotinic receptor, Bioorg. Med. Chem. Lett. 19 (2009) 3449-3452.
-
[3] P. Jeschke, R. Nauen, Neonicotinoids-from zero to hero in insecticide chemistry, Pest Manag. Sci. 64 (2008) 1084-1098.[3] P. Jeschke, R. Nauen, Neonicotinoids-from zero to hero in insecticide chemistry, Pest Manag. Sci. 64 (2008) 1084-1098.
-
[4] M. Tomizawa, J.E. Casida, Neonicotinoid insecticide toxicology: mechanisms of selective action, Annu. Rev. Pharmacool. Toxicol. 45 (2005) 247-268.[4] M. Tomizawa, J.E. Casida, Neonicotinoid insecticide toxicology: mechanisms of selective action, Annu. Rev. Pharmacool. Toxicol. 45 (2005) 247-268.
-
[5] M. Matsumura, H. Takeuchi, M. Satoh, et al., Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-east Asia, Pest Manag. Sci. 64 (2008) 1115-1121.[5] M. Matsumura, H. Takeuchi, M. Satoh, et al., Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-east Asia, Pest Manag. Sci. 64 (2008) 1115-1121.
-
[6] Z.Y. Wang, M.D. Yao, Y.D. Wu, Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci, Pest Manag. Sci. 65 (2009) 1189-1194.[6] Z.Y. Wang, M.D. Yao, Y.D. Wu, Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci, Pest Manag. Sci. 65 (2009) 1189-1194.
-
[7] K. Gorman, G. Devine, J. Bennison, et al., Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), Pest Manag. Sci. 63 (2007) 555-558.[7] K. Gorman, G. Devine, J. Bennison, et al., Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), Pest Manag. Sci. 63 (2007) 555-558.
-
[8] P. Jeschke, R. Nauen, M. Schindler, et al., Overview of the status and global strategy for neonicotinoids, J. Agric. Food Chem. 59 (2011) 2897-2908.[8] P. Jeschke, R. Nauen, M. Schindler, et al., Overview of the status and global strategy for neonicotinoids, J. Agric. Food Chem. 59 (2011) 2897-2908.
-
[9] M. Bomgardner, Bee deaths and seed treatments, Chem. Eng. News 90 (2012) 12.[9] M. Bomgardner, Bee deaths and seed treatments, Chem. Eng. News 90 (2012) 12.
-
[10] A. Kamel, Refined methodology for the determination of neonicotinoid pesticides and their metabolites in honey bees and bee products by liquid chromatography- tandem mass spectrometry (LC-MS/MS), J. Agric. Food Chem. 58 (2010) 5926-5931.[10] A. Kamel, Refined methodology for the determination of neonicotinoid pesticides and their metabolites in honey bees and bee products by liquid chromatography- tandem mass spectrometry (LC-MS/MS), J. Agric. Food Chem. 58 (2010) 5926-5931.
-
[11] Z.J. Ye, L.N. Shi, X.S. Shao, et al., Pyrrole- and dihydropyrrole-fused neonicotinoids: design, synthesis, and insecticidal evaluation, J. Agric. Food Chem. 61 (2013) 312-319.[11] Z.J. Ye, L.N. Shi, X.S. Shao, et al., Pyrrole- and dihydropyrrole-fused neonicotinoids: design, synthesis, and insecticidal evaluation, J. Agric. Food Chem. 61 (2013) 312-319.
-
[12] Z.Z. Tian, X.S. Shao, Z. Li, et al., Synthesis, insecticidal activity, and QSAR of novel nitromethylene neonicotinoids with tetrahydropyridine fixed cis configuration and exo-ring ether modification, J. Agric. Food Chem. 55 (2007) 2288-2292.[12] Z.Z. Tian, X.S. Shao, Z. Li, et al., Synthesis, insecticidal activity, and QSAR of novel nitromethylene neonicotinoids with tetrahydropyridine fixed cis configuration and exo-ring ether modification, J. Agric. Food Chem. 55 (2007) 2288-2292.
-
[13] X.S. Shao, W.W. Zhang, Y.Q. Peng, et al., cis-Nitromethylene neonicotinoids as new nicotinic family: synthesis, structural diversity, and insecticidal evaluation of hexahydroimidazo[1,2-a]pyridine, Bioorg. Med. Chem. Lett. 18 (2008) 6513-6516.[13] X.S. Shao, W.W. Zhang, Y.Q. Peng, et al., cis-Nitromethylene neonicotinoids as new nicotinic family: synthesis, structural diversity, and insecticidal evaluation of hexahydroimidazo[1,2-a]pyridine, Bioorg. Med. Chem. Lett. 18 (2008) 6513-6516.
-
[14] Y.F. Fan, W.W. Zhang, X.S. Shao, et al., Facile three-component synthesis and insecticidal evaluation of hexahydroimidazo[1,2-a]pyridine derivatives, Chin. Chem. Lett. 26 (2015) 1-5.[14] Y.F. Fan, W.W. Zhang, X.S. Shao, et al., Facile three-component synthesis and insecticidal evaluation of hexahydroimidazo[1,2-a]pyridine derivatives, Chin. Chem. Lett. 26 (2015) 1-5.
-
[15] X.S. Shao, H. Fu, X.Y. Xu, et al., Divalent and oxabridged neonicotinoids constructed by dialdehydes and nitromethylene analogues of imidacloprid: design, synthesis, crystal structure, and insecticidal activities, J. Agric. Food Chem. 58 (2010) 2696-2702.[15] X.S. Shao, H. Fu, X.Y. Xu, et al., Divalent and oxabridged neonicotinoids constructed by dialdehydes and nitromethylene analogues of imidacloprid: design, synthesis, crystal structure, and insecticidal activities, J. Agric. Food Chem. 58 (2010) 2696-2702.
-
[16] R.B. Xu, R. Xia, M. Luo, et al., Design, synthesis, crystal structures, and insecticidal activities of eight-membered azabridge neonicotinoid analogues, J. Agric. Food Chem. 62 (2014) 381-390.[16] R.B. Xu, R. Xia, M. Luo, et al., Design, synthesis, crystal structures, and insecticidal activities of eight-membered azabridge neonicotinoid analogues, J. Agric. Food Chem. 62 (2014) 381-390.
-
[17] X.S. Shao, P.W. Lee, Z.W. Liu, et al., cis-Configuration: a new tactic/rationale for neonicotinoid molecular design, J. Agric. Food Chem. 59 (2011) 2943-2949.[17] X.S. Shao, P.W. Lee, Z.W. Liu, et al., cis-Configuration: a new tactic/rationale for neonicotinoid molecular design, J. Agric. Food Chem. 59 (2011) 2943-2949.
-
[18] L. Novák, G. Hornyánszky, J. Rohály, et al., Preparation of novel hexythiazox analogues, Pest. Sci. 49 (1997) 85-89.[18] L. Novák, G. Hornyánszky, J. Rohály, et al., Preparation of novel hexythiazox analogues, Pest. Sci. 49 (1997) 85-89.
-
[19] H. Takahiro, T. Tadaaki, K. Tooru, et al., Organophosphorus compounds as insecticides, miticides, and nematocides, Japan Patent 60104096, 1985.[19] H. Takahiro, T. Tadaaki, K. Tooru, et al., Organophosphorus compounds as insecticides, miticides, and nematocides, Japan Patent 60104096, 1985.
-
[20] Y.M. Cui, Q.Q. Huang, J. Xu, et al., Identification of potent type I MetAP inhibitors by simple bioisosteric replacement. Part 1: Synthesis and preliminary SAR studies of thiazole-4-carboxylic acid thiazol-2-ylamide derivatives, Bioorg. Med. Chem. Lett. 15 (2005) 3732-3736.[20] Y.M. Cui, Q.Q. Huang, J. Xu, et al., Identification of potent type I MetAP inhibitors by simple bioisosteric replacement. Part 1: Synthesis and preliminary SAR studies of thiazole-4-carboxylic acid thiazol-2-ylamide derivatives, Bioorg. Med. Chem. Lett. 15 (2005) 3732-3736.
-
[21] Q.M. Wang, H. Li, Y.H. Li, et al., Synthesis and herbicidal activity of 2-cyano-3- (2-chlorothiazol-5-yl)methylaminoacrylates, J. Agric. Food Chem. 52 (2004) 1918-1922.[21] Q.M. Wang, H. Li, Y.H. Li, et al., Synthesis and herbicidal activity of 2-cyano-3- (2-chlorothiazol-5-yl)methylaminoacrylates, J. Agric. Food Chem. 52 (2004) 1918-1922.
-
[22] J.G. Samaritoni, D.A. Demeter, J.M. Gifford, et al., Dihydropiperazine neonicotinoid compounds. Synthesis and insecticidal activity, J. Agric. Food Chem. 51 (2003) 3035-3042.[22] J.G. Samaritoni, D.A. Demeter, J.M. Gifford, et al., Dihydropiperazine neonicotinoid compounds. Synthesis and insecticidal activity, J. Agric. Food Chem. 51 (2003) 3035-3042.
-
[23] S. Suchail, D. Guez, L.P. Belzunces, Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera, Environ. Toxicol. Chem. 20 (2001) 2482-2486.[23] S. Suchail, D. Guez, L.P. Belzunces, Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera, Environ. Toxicol. Chem. 20 (2001) 2482-2486.
-
[24] S.Y. Lu, X.S. Shao, Z. Li, et al., Design, synthesis, and particular biological behaviors of chain-opening nitromethylene neonicotinoids with cis configuration, J. Agric. Food Chem. 60 (2012) 322-330.[24] S.Y. Lu, X.S. Shao, Z. Li, et al., Design, synthesis, and particular biological behaviors of chain-opening nitromethylene neonicotinoids with cis configuration, J. Agric. Food Chem. 60 (2012) 322-330.
-
-

计量
- PDF下载量: 0
- 文章访问数: 927
- HTML全文浏览量: 22