Gel-incorporated PbS and PbI2 single-crystals

Wei Liu Yu-Jing Liu Liao Chen Tao Ye Hong-Zheng Chen Han-Ying Li

Citation:  Wei Liu, Yu-Jing Liu, Liao Chen, Tao Ye, Hong-Zheng Chen, Han-Ying Li. Gel-incorporated PbS and PbI2 single-crystals[J]. Chinese Chemical Letters, 2015, 26(5): 504-508. doi: 10.1016/j.cclet.2015.01.020 shu

Gel-incorporated PbS and PbI2 single-crystals

    通讯作者: Han-Ying Li,
  • 基金项目:

    This work was supported by Zhejiang Province Natural Science Foundation (No. LZ13E030002) (No. LZ13E030002)

    the 973 Program ([56_TD$DIF]No. 2014CB643503) ([56_TD$DIF]No. 2014CB643503)

    the National Natural Science Foundation of China (Nos. 51222302, 51373150, 51461165301) (Nos. 51222302, 51373150, 51461165301)

摘要: Gel-incorporated single-crystals provide unique combinational properties of long-range order and composite structures, which is desired for semiconducting and conducting materials. However, the reported gel-incorporated single-crystals are limited to insulating crystals. Here, we examine crystals of two typical semiconductors, lead sulfide (PbS) and lead iodide (PbI2), grown from both silica gels and agarose gels. In all the four crystal-gel pairs, single-crystals of the cubic phase of PbS and the hexagonal phase of PbI2 were obtained according to the X-ray diffraction analysis. Dissolution of the gel-grown crystals exposed insoluble materials with the shape similar to the original crystals, indicative of gelincorporation inside the crystals. As such, this work creates a facile strategy to construct 3D heterostructures inside semiconducting single-crystals without destroying their long-range order.

English

  • 
    1. [1] H.K. Henisch, Crystals in Gels and Liesegang Rings, Cambridge University Press, Cambridge, 2005.[1] H.K. Henisch, Crystals in Gels and Liesegang Rings, Cambridge University Press, Cambridge, 2005.

    2. [2] W. Brenner, Z.V.I. Blank, Y. Okamoto, Growth of single crystals of lead sulphide in silica gels near ambient temperatures, Nature 212 (1966) 392-393.[2] W. Brenner, Z.V.I. Blank, Y. Okamoto, Growth of single crystals of lead sulphide in silica gels near ambient temperatures, Nature 212 (1966) 392-393.

    3. [3] A.R. Patel, A.V. Rao, Crystal growth in gel media, Bull. Mater. Sci. 4 (1982) 527- 548.[3] A.R. Patel, A.V. Rao, Crystal growth in gel media, Bull. Mater. Sci. 4 (1982) 527- 548.

    4. [4] J.M. García-Ruíz, Growth history of PbS single crystals at room temperature, J. Cryst. Growth 75 (1986) 441-453.[4] J.M. García-Ruíz, Growth history of PbS single crystals at room temperature, J. Cryst. Growth 75 (1986) 441-453.

    5. [5] J.A. Gavira, J.M. García-Ruiz, Agarose as crystallisation media for proteins II: trapping of gel fibres into the crystals, Acta Crystallogr. Sect. D: Biol. Crystallogr. 58 (2002) 1653-1656.[5] J.A. Gavira, J.M. García-Ruiz, Agarose as crystallisation media for proteins II: trapping of gel fibres into the crystals, Acta Crystallogr. Sect. D: Biol. Crystallogr. 58 (2002) 1653-1656.

    6. [6] E. Asenath-Smith, H.Y. Li, E.C. Keene, Z.W. Seh, L.A. Estroff, Crystal growth of calcium carbonate in hydrogels as a model of biomineralization, Adv. Funct. Mater. 22 (2012) 2891-2914.[6] E. Asenath-Smith, H.Y. Li, E.C. Keene, Z.W. Seh, L.A. Estroff, Crystal growth of calcium carbonate in hydrogels as a model of biomineralization, Adv. Funct. Mater. 22 (2012) 2891-2914.

    7. [7] H. Nickl, H. Henisch, Growth of calcite crystals in gels, J. Electrochem. Soc. 116 (1969) 1258-1260.[7] H. Nickl, H. Henisch, Growth of calcite crystals in gels, J. Electrochem. Soc. 116 (1969) 1258-1260.

    8. [8] J.A. Gavira, A.E. Van Driessche, J.-M. Garcia-Ruiz, Growth of ultrastable protein- silica composite crystals, Cryst. Growth Des. 13 (2013) 2522-2529.[8] J.A. Gavira, A.E. Van Driessche, J.-M. Garcia-Ruiz, Growth of ultrastable protein- silica composite crystals, Cryst. Growth Des. 13 (2013) 2522-2529.

    9. [9] J.M. García-Ruiz, J.A. Gavira, F. Otálora, A. Guasch, M. Coll, Reinforced protein crystals, Mater. Res. Bull. 33 (1998) 1593-1598.[9] J.M. García-Ruiz, J.A. Gavira, F. Otálora, A. Guasch, M. Coll, Reinforced protein crystals, Mater. Res. Bull. 33 (1998) 1593-1598.

    10. [10] Y.-X. Huang, J. Buder, R. Cardoso-Gil, et al., Shape development and structure of a complex (Otoconia-Like?) calcite-gelatine composite, Angew. Chem. Int. Ed. 47 (2008) 8280-8284.[10] Y.-X. Huang, J. Buder, R. Cardoso-Gil, et al., Shape development and structure of a complex (Otoconia-Like?) calcite-gelatine composite, Angew. Chem. Int. Ed. 47 (2008) 8280-8284.

    11. [11] O. Grassmann, R.B. Neder, A. Putnis, P. Löbmann, Biomimetic control of crystal assembly by growth in an organic hydrogel network, Am. Mineral. 88 (2003) 647-652.[11] O. Grassmann, R.B. Neder, A. Putnis, P. Löbmann, Biomimetic control of crystal assembly by growth in an organic hydrogel network, Am. Mineral. 88 (2003) 647-652.

    12. [12] Y.J. Liu, W. Yuan, Y. Shi, et al., Functionalizing single crystals: incorporation of nanoparticles inside gel-grown calcite crystals, Angew. Chem. Int. Ed. Engl. 53 (2014) 4127-4131.[12] Y.J. Liu, W. Yuan, Y. Shi, et al., Functionalizing single crystals: incorporation of nanoparticles inside gel-grown calcite crystals, Angew. Chem. Int. Ed. Engl. 53 (2014) 4127-4131.

    13. [13] H.Y. Li, Y. Fujiki, K. Sada, L.A. Estroff, Gel incorporation inside of organic single crystals grown in agarose hydrogels, CrystEngComm 13 (2011) 1060-1062.[13] H.Y. Li, Y. Fujiki, K. Sada, L.A. Estroff, Gel incorporation inside of organic single crystals grown in agarose hydrogels, CrystEngComm 13 (2011) 1060-1062.

    14. [14] H.Y. Li, H.L. Xin, D.A. Muller, L.A. Estroff, Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels, Science 326 (2009) 1244-1247.[14] H.Y. Li, H.L. Xin, D.A. Muller, L.A. Estroff, Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels, Science 326 (2009) 1244-1247.

    15. [15] Y. Oaki, S. Hayashi, H. Imai, A hierarchical self-similar structure of oriented calcite with association of an agar gel matrix: inheritance of crystal habit from nanoscale, Chem. Commun. (2007) 2841-2843.[15] Y. Oaki, S. Hayashi, H. Imai, A hierarchical self-similar structure of oriented calcite with association of an agar gel matrix: inheritance of crystal habit from nanoscale, Chem. Commun. (2007) 2841-2843.

    16. [16] Y.-Y. Kim, A.S. Schenk, D. Walsh, et al., Bio-inspired formation of functional calcite/metal oxide nanoparticle composites, Nanoscale 6 (2014) 852-859.[16] Y.-Y. Kim, A.S. Schenk, D. Walsh, et al., Bio-inspired formation of functional calcite/metal oxide nanoparticle composites, Nanoscale 6 (2014) 852-859.

    17. [17] S. Bag, P.N. Trikalitis, P.J. Chupas, G.S. Armatas, M.G. Kanatzidis, Porous semiconducting gels and aerogels from chalcogenide clusters, Science 317 (2007) 490- 493.[17] S. Bag, P.N. Trikalitis, P.J. Chupas, G.S. Armatas, M.G. Kanatzidis, Porous semiconducting gels and aerogels from chalcogenide clusters, Science 317 (2007) 490- 493.

    18. [18] R.I. Petrova, J.A. Swift, Habit changes of sodium bromate crystals grown from gel media, Cryst. Growth Des. 2 (2002) 573-578.[18] R.I. Petrova, J.A. Swift, Habit changes of sodium bromate crystals grown from gel media, Cryst. Growth Des. 2 (2002) 573-578.

    19. [19] L. Chen, T. Ye, Y.J. Liu, et al., Gel network incorporation into single-crystals: effects of gel structures and crystal-gel interaction, CrystEngComm 16 (2014) 6901-6906.[19] L. Chen, T. Ye, Y.J. Liu, et al., Gel network incorporation into single-crystals: effects of gel structures and crystal-gel interaction, CrystEngComm 16 (2014) 6901-6906.

    20. [20] Y.J. Liu, L. Chen, W. Liu, et al., Synthetic polymer/single-crystal composite, Polym. Adv. Technol. 25 (2014) 1189-1194.[20] Y.J. Liu, L. Chen, W. Liu, et al., Synthetic polymer/single-crystal composite, Polym. Adv. Technol. 25 (2014) 1189-1194.

    21. [21] E.J. Crossland, N. Noel, V. Sivaram, et al., Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance, Nature 495 (2013) 215-219.[21] E.J. Crossland, N. Noel, V. Sivaram, et al., Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance, Nature 495 (2013) 215-219.

    22. [22] R. Zeis, T. Lei, K. Sieradzki, J. Snyder, J. Erlebacher, Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold, J. Catal. 253 (2008) 132-138.[22] R. Zeis, T. Lei, K. Sieradzki, J. Snyder, J. Erlebacher, Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold, J. Catal. 253 (2008) 132-138.

    23. [23] Y. Ding, M.W. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis, J. Am. Chem. Soc. 126 (2004) 6876-6877.[23] Y. Ding, M.W. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis, J. Am. Chem. Soc. 126 (2004) 6876-6877.

    24. [24] T. Fujita, P. Guan, K. McKenna, et al., Atomic origins of the high catalytic activity of nanoporous gold, Nat. Mater. 11 (2012) 775-780.[24] T. Fujita, P. Guan, K. McKenna, et al., Atomic origins of the high catalytic activity of nanoporous gold, Nat. Mater. 11 (2012) 775-780.

    25. [25] J.L. Machol, F.W. Wise, R.C. Patel, D.B. Tanner, Vibronic quantum beats in PbS microcrystallites, Phys. Rev. B 48 (1993) 2819-2822.[25] J.L. Machol, F.W. Wise, R.C. Patel, D.B. Tanner, Vibronic quantum beats in PbS microcrystallites, Phys. Rev. B 48 (1993) 2819-2822.

    26. [26] W.H. Song, C.H. Wu, H.Z. Yin, et al., Preparation of PbS nanoparticles by phasetransfer method and application to Pb2+-selective electrode based on PVC membrane, Anal. Lett. 41 (2008) 2844-2859.[26] W.H. Song, C.H. Wu, H.Z. Yin, et al., Preparation of PbS nanoparticles by phasetransfer method and application to Pb2+-selective electrode based on PVC membrane, Anal. Lett. 41 (2008) 2844-2859.

    27. [27] B.-R. Hyun, H. Chen, D.A. Rey, F.W. Wise, C.A. Batt, Near-infrared fluorescence imaging with water-soluble lead salt quantum dots, J. Phys. Chem. B 111 (2007) 5726-5730.[27] B.-R. Hyun, H. Chen, D.A. Rey, F.W. Wise, C.A. Batt, Near-infrared fluorescence imaging with water-soluble lead salt quantum dots, J. Phys. Chem. B 111 (2007) 5726-5730.

    28. [28] P. Nair, O. Gomezdaza, M. Nair, Metal sulphide thin film photography with lead sulphide thin films, Adv. Mater. Opt. Electron. 1 (1992) 139-145.[28] P. Nair, O. Gomezdaza, M. Nair, Metal sulphide thin film photography with lead sulphide thin films, Adv. Mater. Opt. Electron. 1 (1992) 139-145.

    29. [29] S. Gü nes, K.P. Fritz, H. Neugebauer, et al., Hybrid solar cells using PbS nanoparticles, Sol. Energy Mater. Sol. Cells 91 (2007) 420-423.[29] S. Gü nes, K.P. Fritz, H. Neugebauer, et al., Hybrid solar cells using PbS nanoparticles, Sol. Energy Mater. Sol. Cells 91 (2007) 420-423.

    30. [30] M. Nam, J. Park, S.W. Kim, K. Lee, Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer, J. Mater. Chem. A 2 (2014) 3978-3985.[30] M. Nam, J. Park, S.W. Kim, K. Lee, Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer, J. Mater. Chem. A 2 (2014) 3978-3985.

    31. [31] H. Su, Y. Xie, P. Gao, Y. Xiong, Y. Qian, Synthesis of MS/TiO2 (M = Pb, Zn, Cd) nanocomposites through a mild sol-gel process, J. Mater. Chem. 11 (2001) 684- 686.[31] H. Su, Y. Xie, P. Gao, Y. Xiong, Y. Qian, Synthesis of MS/TiO2 (M = Pb, Zn, Cd) nanocomposites through a mild sol-gel process, J. Mater. Chem. 11 (2001) 684- 686.

    32. [32] Y.R. Ma, L.M. Qi, J.M. Ma, H.M. Cheng, Hierarchical, star-shaped PbS crystals formed by a simple solution route, Cryst. Growth Des. 4 (2004) 351-354.[32] Y.R. Ma, L.M. Qi, J.M. Ma, H.M. Cheng, Hierarchical, star-shaped PbS crystals formed by a simple solution route, Cryst. Growth Des. 4 (2004) 351-354.

    33. [33] B. Ding, M.M. Shi, F. Chen, et al., Shape-controlled syntheses of PbS submicro-/nano-crystals via hydrothermal method, J. Cryst. Growth 311 (2009) 1533- 1538.[33] B. Ding, M.M. Shi, F. Chen, et al., Shape-controlled syntheses of PbS submicro-/nano-crystals via hydrothermal method, J. Cryst. Growth 311 (2009) 1533- 1538.

    34. [34] F. Chen, W.M. Qiu, X.Q. Chen, M. Wang, H.Z. Chen, Nonsurfactant synthesis of PbS crystals via electrodeposition and hydrothermal methods: from octahedron to maya-pyramid, CrystEngComm 12 (2010) 1893-1898.[34] F. Chen, W.M. Qiu, X.Q. Chen, M. Wang, H.Z. Chen, Nonsurfactant synthesis of PbS crystals via electrodeposition and hydrothermal methods: from octahedron to maya-pyramid, CrystEngComm 12 (2010) 1893-1898.

    35. [35] X.H. Zhu, Z.R. Wei, Y.R. Jin, A.P. Xiang, Growth and characterization of a PbI2 single crystal used for gamma ray detectors, Cryst. Res. Technol. 42 (2007) 456-459.[35] X.H. Zhu, Z.R. Wei, Y.R. Jin, A.P. Xiang, Growth and characterization of a PbI2 single crystal used for gamma ray detectors, Cryst. Res. Technol. 42 (2007) 456-459.

    36. [36] K. Shah, F. Olschner, L. Moy, et al., Lead iodide X-ray detection systems, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 380 (1996) 266-270.[36] K. Shah, F. Olschner, L. Moy, et al., Lead iodide X-ray detection systems, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 380 (1996) 266-270.

    37. [37] V.H. Fragal, R. Silva, T.P. Cellet, et al., Hosted formation of PbS crystals on polyethylene modified surface, J. Braz. Chem. Soc. 24 (2013) 336-343.[37] V.H. Fragal, R. Silva, T.P. Cellet, et al., Hosted formation of PbS crystals on polyethylene modified surface, J. Braz. Chem. Soc. 24 (2013) 336-343.

    38. [38] H.Y. Li, L.A. Estroff, Calcite growth in hydrogels: assessing the mechanism of polymer-network incorporation into single crystals, Adv. Mater. 21 (2009) 470- 473.[38] H.Y. Li, L.A. Estroff, Calcite growth in hydrogels: assessing the mechanism of polymer-network incorporation into single crystals, Adv. Mater. 21 (2009) 470- 473.

    39. [39] Y. Wang, A. Suna, W. Mahler, R. Kasowski, PbS in polymers. From molecules to bulk solids, J. Chem. Phys. 87 (1987) 7315.[39] Y. Wang, A. Suna, W. Mahler, R. Kasowski, PbS in polymers. From molecules to bulk solids, J. Chem. Phys. 87 (1987) 7315.

    40. [40] A.R. Patel, A.V. Rao, An improved design to grow larger and more perfect single crystals in gels, J. Cryst. Growth. 49 (1980) 589-590.[40] A.R. Patel, A.V. Rao, An improved design to grow larger and more perfect single crystals in gels, J. Cryst. Growth. 49 (1980) 589-590.

    41. [41] D. Bhavsar, K. Saraf, Morphology of PbI2 crystals grown by gel method, Cryst. Res. Technol. 37 (2002) 51-55.[41] D. Bhavsar, K. Saraf, Morphology of PbI2 crystals grown by gel method, Cryst. Res. Technol. 37 (2002) 51-55.

    42. [42] K. Sangwal, A.R. Patel, Growth features of PbS crystals grown in silica gels, J. Cryst. Growth 23 (1974) 282-288.[42] K. Sangwal, A.R. Patel, Growth features of PbS crystals grown in silica gels, J. Cryst. Growth 23 (1974) 282-288.

    43. [43] M. Chand, G.C. Trigunayat, Effect of impurities on solid state structure transformations in gel-grown PbI2 crystals, J. Cryst. Growth 39 (1977) 299-304.[43] M. Chand, G.C. Trigunayat, Effect of impurities on solid state structure transformations in gel-grown PbI2 crystals, J. Cryst. Growth 39 (1977) 299-304.

    44. [44] A. Brif, G. Ankonina, C. Drathen, B. Pokroy, Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids, Adv. Mater. 26 (2014) 477-481.[44] A. Brif, G. Ankonina, C. Drathen, B. Pokroy, Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids, Adv. Mater. 26 (2014) 477-481.

    45. [45] M. Sindoro, Y. Feng, S. Xing, et al., Triple-layer (Au@perylene)@polyaniline nanocomposite: unconventional growth of faceted organic nanocrystals on polycrystalline Au, Angew. Chem. Int. Ed. Engl. 50 (2011) 9898-9902.[45] M. Sindoro, Y. Feng, S. Xing, et al., Triple-layer (Au@perylene)@polyaniline nanocomposite: unconventional growth of faceted organic nanocrystals on polycrystalline Au, Angew. Chem. Int. Ed. Engl. 50 (2011) 9898-9902.

    46. [46] Y. Zhao, B.R. Liu, L.J. Pan, G.H. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices, Energy Environ. Sci. 6 (2013) 2856-2870.[46] Y. Zhao, B.R. Liu, L.J. Pan, G.H. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices, Energy Environ. Sci. 6 (2013) 2856-2870.

    47. [47] Y. Shi, L.J. Pan, B.R. Liu, et al., Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes, J. Mater. Chem. A 2 (2014) 6086-6091.[47] Y. Shi, L.J. Pan, B.R. Liu, et al., Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes, J. Mater. Chem. A 2 (2014) 6086-6091.

    48. [48] K.Y. Hua, C.M. Deng, C. He, et al., Organic semiconductors-coated polyacrylonitrile (PAN) electrospun nanofibrous mats for highly sensitive chemosensors via evanescent- wave guiding effect, Chin. Chem. Lett. 24 (2013) 643-646.[48] K.Y. Hua, C.M. Deng, C. He, et al., Organic semiconductors-coated polyacrylonitrile (PAN) electrospun nanofibrous mats for highly sensitive chemosensors via evanescent- wave guiding effect, Chin. Chem. Lett. 24 (2013) 643-646.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  902
  • HTML全文浏览量:  11
文章相关
  • 发布日期:  2015-01-24
  • 收稿日期:  2014-01-22
  • 网络出版日期:  2015-01-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章