
Gel-incorporated PbS and PbI2 single-crystals
-
关键词:
- Single crystals
- / Gel-incorporation
- / Semiconductor
- / PbS
- / PbI2
English
Gel-incorporated PbS and PbI2 single-crystals
-
Key words:
- Single crystals
- / Gel-incorporation
- / Semiconductor
- / PbS
- / PbI2
-
-
-
[1] H.K. Henisch, Crystals in Gels and Liesegang Rings, Cambridge University Press, Cambridge, 2005.[1] H.K. Henisch, Crystals in Gels and Liesegang Rings, Cambridge University Press, Cambridge, 2005.
-
[2] W. Brenner, Z.V.I. Blank, Y. Okamoto, Growth of single crystals of lead sulphide in silica gels near ambient temperatures, Nature 212 (1966) 392-393.[2] W. Brenner, Z.V.I. Blank, Y. Okamoto, Growth of single crystals of lead sulphide in silica gels near ambient temperatures, Nature 212 (1966) 392-393.
-
[3] A.R. Patel, A.V. Rao, Crystal growth in gel media, Bull. Mater. Sci. 4 (1982) 527- 548.[3] A.R. Patel, A.V. Rao, Crystal growth in gel media, Bull. Mater. Sci. 4 (1982) 527- 548.
-
[4] J.M. García-Ruíz, Growth history of PbS single crystals at room temperature, J. Cryst. Growth 75 (1986) 441-453.[4] J.M. García-Ruíz, Growth history of PbS single crystals at room temperature, J. Cryst. Growth 75 (1986) 441-453.
-
[5] J.A. Gavira, J.M. García-Ruiz, Agarose as crystallisation media for proteins II: trapping of gel fibres into the crystals, Acta Crystallogr. Sect. D: Biol. Crystallogr. 58 (2002) 1653-1656.[5] J.A. Gavira, J.M. García-Ruiz, Agarose as crystallisation media for proteins II: trapping of gel fibres into the crystals, Acta Crystallogr. Sect. D: Biol. Crystallogr. 58 (2002) 1653-1656.
-
[6] E. Asenath-Smith, H.Y. Li, E.C. Keene, Z.W. Seh, L.A. Estroff, Crystal growth of calcium carbonate in hydrogels as a model of biomineralization, Adv. Funct. Mater. 22 (2012) 2891-2914.[6] E. Asenath-Smith, H.Y. Li, E.C. Keene, Z.W. Seh, L.A. Estroff, Crystal growth of calcium carbonate in hydrogels as a model of biomineralization, Adv. Funct. Mater. 22 (2012) 2891-2914.
-
[7] H. Nickl, H. Henisch, Growth of calcite crystals in gels, J. Electrochem. Soc. 116 (1969) 1258-1260.[7] H. Nickl, H. Henisch, Growth of calcite crystals in gels, J. Electrochem. Soc. 116 (1969) 1258-1260.
-
[8] J.A. Gavira, A.E. Van Driessche, J.-M. Garcia-Ruiz, Growth of ultrastable protein- silica composite crystals, Cryst. Growth Des. 13 (2013) 2522-2529.[8] J.A. Gavira, A.E. Van Driessche, J.-M. Garcia-Ruiz, Growth of ultrastable protein- silica composite crystals, Cryst. Growth Des. 13 (2013) 2522-2529.
-
[9] J.M. García-Ruiz, J.A. Gavira, F. Otálora, A. Guasch, M. Coll, Reinforced protein crystals, Mater. Res. Bull. 33 (1998) 1593-1598.[9] J.M. García-Ruiz, J.A. Gavira, F. Otálora, A. Guasch, M. Coll, Reinforced protein crystals, Mater. Res. Bull. 33 (1998) 1593-1598.
-
[10] Y.-X. Huang, J. Buder, R. Cardoso-Gil, et al., Shape development and structure of a complex (Otoconia-Like?) calcite-gelatine composite, Angew. Chem. Int. Ed. 47 (2008) 8280-8284.[10] Y.-X. Huang, J. Buder, R. Cardoso-Gil, et al., Shape development and structure of a complex (Otoconia-Like?) calcite-gelatine composite, Angew. Chem. Int. Ed. 47 (2008) 8280-8284.
-
[11] O. Grassmann, R.B. Neder, A. Putnis, P. Löbmann, Biomimetic control of crystal assembly by growth in an organic hydrogel network, Am. Mineral. 88 (2003) 647-652.[11] O. Grassmann, R.B. Neder, A. Putnis, P. Löbmann, Biomimetic control of crystal assembly by growth in an organic hydrogel network, Am. Mineral. 88 (2003) 647-652.
-
[12] Y.J. Liu, W. Yuan, Y. Shi, et al., Functionalizing single crystals: incorporation of nanoparticles inside gel-grown calcite crystals, Angew. Chem. Int. Ed. Engl. 53 (2014) 4127-4131.[12] Y.J. Liu, W. Yuan, Y. Shi, et al., Functionalizing single crystals: incorporation of nanoparticles inside gel-grown calcite crystals, Angew. Chem. Int. Ed. Engl. 53 (2014) 4127-4131.
-
[13] H.Y. Li, Y. Fujiki, K. Sada, L.A. Estroff, Gel incorporation inside of organic single crystals grown in agarose hydrogels, CrystEngComm 13 (2011) 1060-1062.[13] H.Y. Li, Y. Fujiki, K. Sada, L.A. Estroff, Gel incorporation inside of organic single crystals grown in agarose hydrogels, CrystEngComm 13 (2011) 1060-1062.
-
[14] H.Y. Li, H.L. Xin, D.A. Muller, L.A. Estroff, Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels, Science 326 (2009) 1244-1247.[14] H.Y. Li, H.L. Xin, D.A. Muller, L.A. Estroff, Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels, Science 326 (2009) 1244-1247.
-
[15] Y. Oaki, S. Hayashi, H. Imai, A hierarchical self-similar structure of oriented calcite with association of an agar gel matrix: inheritance of crystal habit from nanoscale, Chem. Commun. (2007) 2841-2843.[15] Y. Oaki, S. Hayashi, H. Imai, A hierarchical self-similar structure of oriented calcite with association of an agar gel matrix: inheritance of crystal habit from nanoscale, Chem. Commun. (2007) 2841-2843.
-
[16] Y.-Y. Kim, A.S. Schenk, D. Walsh, et al., Bio-inspired formation of functional calcite/metal oxide nanoparticle composites, Nanoscale 6 (2014) 852-859.[16] Y.-Y. Kim, A.S. Schenk, D. Walsh, et al., Bio-inspired formation of functional calcite/metal oxide nanoparticle composites, Nanoscale 6 (2014) 852-859.
-
[17] S. Bag, P.N. Trikalitis, P.J. Chupas, G.S. Armatas, M.G. Kanatzidis, Porous semiconducting gels and aerogels from chalcogenide clusters, Science 317 (2007) 490- 493.[17] S. Bag, P.N. Trikalitis, P.J. Chupas, G.S. Armatas, M.G. Kanatzidis, Porous semiconducting gels and aerogels from chalcogenide clusters, Science 317 (2007) 490- 493.
-
[18] R.I. Petrova, J.A. Swift, Habit changes of sodium bromate crystals grown from gel media, Cryst. Growth Des. 2 (2002) 573-578.[18] R.I. Petrova, J.A. Swift, Habit changes of sodium bromate crystals grown from gel media, Cryst. Growth Des. 2 (2002) 573-578.
-
[19] L. Chen, T. Ye, Y.J. Liu, et al., Gel network incorporation into single-crystals: effects of gel structures and crystal-gel interaction, CrystEngComm 16 (2014) 6901-6906.[19] L. Chen, T. Ye, Y.J. Liu, et al., Gel network incorporation into single-crystals: effects of gel structures and crystal-gel interaction, CrystEngComm 16 (2014) 6901-6906.
-
[20] Y.J. Liu, L. Chen, W. Liu, et al., Synthetic polymer/single-crystal composite, Polym. Adv. Technol. 25 (2014) 1189-1194.[20] Y.J. Liu, L. Chen, W. Liu, et al., Synthetic polymer/single-crystal composite, Polym. Adv. Technol. 25 (2014) 1189-1194.
-
[21] E.J. Crossland, N. Noel, V. Sivaram, et al., Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance, Nature 495 (2013) 215-219.[21] E.J. Crossland, N. Noel, V. Sivaram, et al., Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance, Nature 495 (2013) 215-219.
-
[22] R. Zeis, T. Lei, K. Sieradzki, J. Snyder, J. Erlebacher, Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold, J. Catal. 253 (2008) 132-138.[22] R. Zeis, T. Lei, K. Sieradzki, J. Snyder, J. Erlebacher, Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold, J. Catal. 253 (2008) 132-138.
-
[23] Y. Ding, M.W. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis, J. Am. Chem. Soc. 126 (2004) 6876-6877.[23] Y. Ding, M.W. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis, J. Am. Chem. Soc. 126 (2004) 6876-6877.
-
[24] T. Fujita, P. Guan, K. McKenna, et al., Atomic origins of the high catalytic activity of nanoporous gold, Nat. Mater. 11 (2012) 775-780.[24] T. Fujita, P. Guan, K. McKenna, et al., Atomic origins of the high catalytic activity of nanoporous gold, Nat. Mater. 11 (2012) 775-780.
-
[25] J.L. Machol, F.W. Wise, R.C. Patel, D.B. Tanner, Vibronic quantum beats in PbS microcrystallites, Phys. Rev. B 48 (1993) 2819-2822.[25] J.L. Machol, F.W. Wise, R.C. Patel, D.B. Tanner, Vibronic quantum beats in PbS microcrystallites, Phys. Rev. B 48 (1993) 2819-2822.
-
[26] W.H. Song, C.H. Wu, H.Z. Yin, et al., Preparation of PbS nanoparticles by phasetransfer method and application to Pb2+-selective electrode based on PVC membrane, Anal. Lett. 41 (2008) 2844-2859.[26] W.H. Song, C.H. Wu, H.Z. Yin, et al., Preparation of PbS nanoparticles by phasetransfer method and application to Pb2+-selective electrode based on PVC membrane, Anal. Lett. 41 (2008) 2844-2859.
-
[27] B.-R. Hyun, H. Chen, D.A. Rey, F.W. Wise, C.A. Batt, Near-infrared fluorescence imaging with water-soluble lead salt quantum dots, J. Phys. Chem. B 111 (2007) 5726-5730.[27] B.-R. Hyun, H. Chen, D.A. Rey, F.W. Wise, C.A. Batt, Near-infrared fluorescence imaging with water-soluble lead salt quantum dots, J. Phys. Chem. B 111 (2007) 5726-5730.
-
[28] P. Nair, O. Gomezdaza, M. Nair, Metal sulphide thin film photography with lead sulphide thin films, Adv. Mater. Opt. Electron. 1 (1992) 139-145.[28] P. Nair, O. Gomezdaza, M. Nair, Metal sulphide thin film photography with lead sulphide thin films, Adv. Mater. Opt. Electron. 1 (1992) 139-145.
-
[29] S. Gü nes, K.P. Fritz, H. Neugebauer, et al., Hybrid solar cells using PbS nanoparticles, Sol. Energy Mater. Sol. Cells 91 (2007) 420-423.[29] S. Gü nes, K.P. Fritz, H. Neugebauer, et al., Hybrid solar cells using PbS nanoparticles, Sol. Energy Mater. Sol. Cells 91 (2007) 420-423.
-
[30] M. Nam, J. Park, S.W. Kim, K. Lee, Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer, J. Mater. Chem. A 2 (2014) 3978-3985.[30] M. Nam, J. Park, S.W. Kim, K. Lee, Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer, J. Mater. Chem. A 2 (2014) 3978-3985.
-
[31] H. Su, Y. Xie, P. Gao, Y. Xiong, Y. Qian, Synthesis of MS/TiO2 (M = Pb, Zn, Cd) nanocomposites through a mild sol-gel process, J. Mater. Chem. 11 (2001) 684- 686.[31] H. Su, Y. Xie, P. Gao, Y. Xiong, Y. Qian, Synthesis of MS/TiO2 (M = Pb, Zn, Cd) nanocomposites through a mild sol-gel process, J. Mater. Chem. 11 (2001) 684- 686.
-
[32] Y.R. Ma, L.M. Qi, J.M. Ma, H.M. Cheng, Hierarchical, star-shaped PbS crystals formed by a simple solution route, Cryst. Growth Des. 4 (2004) 351-354.[32] Y.R. Ma, L.M. Qi, J.M. Ma, H.M. Cheng, Hierarchical, star-shaped PbS crystals formed by a simple solution route, Cryst. Growth Des. 4 (2004) 351-354.
-
[33] B. Ding, M.M. Shi, F. Chen, et al., Shape-controlled syntheses of PbS submicro-/nano-crystals via hydrothermal method, J. Cryst. Growth 311 (2009) 1533- 1538.[33] B. Ding, M.M. Shi, F. Chen, et al., Shape-controlled syntheses of PbS submicro-/nano-crystals via hydrothermal method, J. Cryst. Growth 311 (2009) 1533- 1538.
-
[34] F. Chen, W.M. Qiu, X.Q. Chen, M. Wang, H.Z. Chen, Nonsurfactant synthesis of PbS crystals via electrodeposition and hydrothermal methods: from octahedron to maya-pyramid, CrystEngComm 12 (2010) 1893-1898.[34] F. Chen, W.M. Qiu, X.Q. Chen, M. Wang, H.Z. Chen, Nonsurfactant synthesis of PbS crystals via electrodeposition and hydrothermal methods: from octahedron to maya-pyramid, CrystEngComm 12 (2010) 1893-1898.
-
[35] X.H. Zhu, Z.R. Wei, Y.R. Jin, A.P. Xiang, Growth and characterization of a PbI2 single crystal used for gamma ray detectors, Cryst. Res. Technol. 42 (2007) 456-459.[35] X.H. Zhu, Z.R. Wei, Y.R. Jin, A.P. Xiang, Growth and characterization of a PbI2 single crystal used for gamma ray detectors, Cryst. Res. Technol. 42 (2007) 456-459.
-
[36] K. Shah, F. Olschner, L. Moy, et al., Lead iodide X-ray detection systems, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 380 (1996) 266-270.[36] K. Shah, F. Olschner, L. Moy, et al., Lead iodide X-ray detection systems, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 380 (1996) 266-270.
-
[37] V.H. Fragal, R. Silva, T.P. Cellet, et al., Hosted formation of PbS crystals on polyethylene modified surface, J. Braz. Chem. Soc. 24 (2013) 336-343.[37] V.H. Fragal, R. Silva, T.P. Cellet, et al., Hosted formation of PbS crystals on polyethylene modified surface, J. Braz. Chem. Soc. 24 (2013) 336-343.
-
[38] H.Y. Li, L.A. Estroff, Calcite growth in hydrogels: assessing the mechanism of polymer-network incorporation into single crystals, Adv. Mater. 21 (2009) 470- 473.[38] H.Y. Li, L.A. Estroff, Calcite growth in hydrogels: assessing the mechanism of polymer-network incorporation into single crystals, Adv. Mater. 21 (2009) 470- 473.
-
[39] Y. Wang, A. Suna, W. Mahler, R. Kasowski, PbS in polymers. From molecules to bulk solids, J. Chem. Phys. 87 (1987) 7315.[39] Y. Wang, A. Suna, W. Mahler, R. Kasowski, PbS in polymers. From molecules to bulk solids, J. Chem. Phys. 87 (1987) 7315.
-
[40] A.R. Patel, A.V. Rao, An improved design to grow larger and more perfect single crystals in gels, J. Cryst. Growth. 49 (1980) 589-590.[40] A.R. Patel, A.V. Rao, An improved design to grow larger and more perfect single crystals in gels, J. Cryst. Growth. 49 (1980) 589-590.
-
[41] D. Bhavsar, K. Saraf, Morphology of PbI2 crystals grown by gel method, Cryst. Res. Technol. 37 (2002) 51-55.[41] D. Bhavsar, K. Saraf, Morphology of PbI2 crystals grown by gel method, Cryst. Res. Technol. 37 (2002) 51-55.
-
[42] K. Sangwal, A.R. Patel, Growth features of PbS crystals grown in silica gels, J. Cryst. Growth 23 (1974) 282-288.[42] K. Sangwal, A.R. Patel, Growth features of PbS crystals grown in silica gels, J. Cryst. Growth 23 (1974) 282-288.
-
[43] M. Chand, G.C. Trigunayat, Effect of impurities on solid state structure transformations in gel-grown PbI2 crystals, J. Cryst. Growth 39 (1977) 299-304.[43] M. Chand, G.C. Trigunayat, Effect of impurities on solid state structure transformations in gel-grown PbI2 crystals, J. Cryst. Growth 39 (1977) 299-304.
-
[44] A. Brif, G. Ankonina, C. Drathen, B. Pokroy, Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids, Adv. Mater. 26 (2014) 477-481.[44] A. Brif, G. Ankonina, C. Drathen, B. Pokroy, Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids, Adv. Mater. 26 (2014) 477-481.
-
[45] M. Sindoro, Y. Feng, S. Xing, et al., Triple-layer (Au@perylene)@polyaniline nanocomposite: unconventional growth of faceted organic nanocrystals on polycrystalline Au, Angew. Chem. Int. Ed. Engl. 50 (2011) 9898-9902.[45] M. Sindoro, Y. Feng, S. Xing, et al., Triple-layer (Au@perylene)@polyaniline nanocomposite: unconventional growth of faceted organic nanocrystals on polycrystalline Au, Angew. Chem. Int. Ed. Engl. 50 (2011) 9898-9902.
-
[46] Y. Zhao, B.R. Liu, L.J. Pan, G.H. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices, Energy Environ. Sci. 6 (2013) 2856-2870.[46] Y. Zhao, B.R. Liu, L.J. Pan, G.H. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices, Energy Environ. Sci. 6 (2013) 2856-2870.
-
[47] Y. Shi, L.J. Pan, B.R. Liu, et al., Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes, J. Mater. Chem. A 2 (2014) 6086-6091.[47] Y. Shi, L.J. Pan, B.R. Liu, et al., Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes, J. Mater. Chem. A 2 (2014) 6086-6091.
-
[48] K.Y. Hua, C.M. Deng, C. He, et al., Organic semiconductors-coated polyacrylonitrile (PAN) electrospun nanofibrous mats for highly sensitive chemosensors via evanescent- wave guiding effect, Chin. Chem. Lett. 24 (2013) 643-646.[48] K.Y. Hua, C.M. Deng, C. He, et al., Organic semiconductors-coated polyacrylonitrile (PAN) electrospun nanofibrous mats for highly sensitive chemosensors via evanescent- wave guiding effect, Chin. Chem. Lett. 24 (2013) 643-646.
-
-

计量
- PDF下载量: 0
- 文章访问数: 902
- HTML全文浏览量: 11