
An oxygen reduction sensor based on a novel type of porous carbon composite membrane electrode
-
关键词:
- Oxygen
- / Sensor
- / Porous carbon composite membrane
- / Electrode
English
An oxygen reduction sensor based on a novel type of porous carbon composite membrane electrode
-
Key words:
- Oxygen
- / Sensor
- / Porous carbon composite membrane
- / Electrode
-
-
-
[1] W. Glasspool, J. Atkinson, A screen-printed amperometric dissolved oxygen sensor utilising an immobilised electrolyte gel and membrane, Sens. Actuators B:Chem. 48(1998) 308-317.[1] W. Glasspool, J. Atkinson, A screen-printed amperometric dissolved oxygen sensor utilising an immobilised electrolyte gel and membrane, Sens. Actuators B:Chem. 48(1998) 308-317.
-
[2] R. Martínez-Máñez, J. Soto, J. Lizondo-Sabater, et al., New potentiomentric dissolved oxygen sensors in thick film technology, Sens. Actuators B:Chem. 101(2004) 295-301.[2] R. Martínez-Máñez, J. Soto, J. Lizondo-Sabater, et al., New potentiomentric dissolved oxygen sensors in thick film technology, Sens. Actuators B:Chem. 101(2004) 295-301.
-
[3] S. Shanmugam, T. Osaka, Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules, Chem. Commun. 47(2011) 4463-4465.[3] S. Shanmugam, T. Osaka, Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules, Chem. Commun. 47(2011) 4463-4465.
-
[4] A. Morozan, P. Jégou, S. Campidelli, S. Palacin, B. Jousselme, Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction, Chem. Commun. 48(2012) 4627-4629.[4] A. Morozan, P. Jégou, S. Campidelli, S. Palacin, B. Jousselme, Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction, Chem. Commun. 48(2012) 4627-4629.
-
[5] Y. Hu, J.O. Jensen, W. Zhang, et al., Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts, Angew. Chem. Int. Ed. 53(2014) 3675-3679.[5] Y. Hu, J.O. Jensen, W. Zhang, et al., Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts, Angew. Chem. Int. Ed. 53(2014) 3675-3679.
-
[6] Y.F. Zhang, X.J. Bo, C. Luhana, et al., Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability, Chem. Commun. 49(2013) 6885-6887.[6] Y.F. Zhang, X.J. Bo, C. Luhana, et al., Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability, Chem. Commun. 49(2013) 6885-6887.
-
[7] Y.M. Tan, C.F. Xu, G.X. Chen, et al., Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction, Adv. Funct. Mater. 22(2012) 4584-4591.[7] Y.M. Tan, C.F. Xu, G.X. Chen, et al., Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction, Adv. Funct. Mater. 22(2012) 4584-4591.
-
[8] Z.Y. Zhang, G.M. Veith, G.M. Brown, et al., Ionic liquid derived carbons as highly efficient oxygen reduction catalysts:first elucidation of pore size distribution dependent kinetics, Chem. Commun. 50(2014) 1469-1471.[8] Z.Y. Zhang, G.M. Veith, G.M. Brown, et al., Ionic liquid derived carbons as highly efficient oxygen reduction catalysts:first elucidation of pore size distribution dependent kinetics, Chem. Commun. 50(2014) 1469-1471.
-
[9] J.T. Jin, F.P. Pan, L.H. Jiang, et al., Catalyst-free synthesis of crumpled boron and nitrogen Co-doped graphite layers with tunable bond structure for oxygen reduction reaction, ACS Nano 8(2014) 3313-3321.[9] J.T. Jin, F.P. Pan, L.H. Jiang, et al., Catalyst-free synthesis of crumpled boron and nitrogen Co-doped graphite layers with tunable bond structure for oxygen reduction reaction, ACS Nano 8(2014) 3313-3321.
-
[10] S.K. Ramasahayam, U.B. Nasini, V. Bairi, A.U. Shaikh, T. Viswanathan, Microwave assisted synthesis and characterization of silicon and phosphorous Co-doped carbon as an electrocatalyst for oxygen reduction reaction, RSC Adv. 4(2014) 6306-6313.[10] S.K. Ramasahayam, U.B. Nasini, V. Bairi, A.U. Shaikh, T. Viswanathan, Microwave assisted synthesis and characterization of silicon and phosphorous Co-doped carbon as an electrocatalyst for oxygen reduction reaction, RSC Adv. 4(2014) 6306-6313.
-
[11] L.T. Qu, Y. Liu, J.-B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano 4(2010) 1321-1326.[11] L.T. Qu, Y. Liu, J.-B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano 4(2010) 1321-1326.
-
[12] S.M. Zhang, H.Y. Zhang, Q. Liu, S.L. Chen, Fe-N doped carbon nanotube/graphene composite:facile synthesis and superior electrocatalytic activity, J. Mater. Chem. A 1(2013) 3302-3308.[12] S.M. Zhang, H.Y. Zhang, Q. Liu, S.L. Chen, Fe-N doped carbon nanotube/graphene composite:facile synthesis and superior electrocatalytic activity, J. Mater. Chem. A 1(2013) 3302-3308.
-
[13] K.I. Ozoemena, S.A. Mamuru, T. Fukuda, N. Kobayashi, T. Nyokong, Metal (Co, Fe) tribenzotetraazachlorin-fullerene conjugates:impact of direct π-bonding on the redox behaviour and oxygen reduction reaction, Electrochem. Commun. 11(2009) 1221-1225.[13] K.I. Ozoemena, S.A. Mamuru, T. Fukuda, N. Kobayashi, T. Nyokong, Metal (Co, Fe) tribenzotetraazachlorin-fullerene conjugates:impact of direct π-bonding on the redox behaviour and oxygen reduction reaction, Electrochem. Commun. 11(2009) 1221-1225.
-
[14] Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano 4(2010) 1790-1798.[14] Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano 4(2010) 1790-1798.
-
[15] W. Ding, Z.D. Wei, S.G. Chen, et al., Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction, Angew. Chem. Int. Ed. 52(2013) 11755-11759.[15] W. Ding, Z.D. Wei, S.G. Chen, et al., Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction, Angew. Chem. Int. Ed. 52(2013) 11755-11759.
-
[16] X.J. Bo, L.P. Guo, Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution, Phys. Chem. Chem. Phys. 15(2013) 2459-2465.[16] X.J. Bo, L.P. Guo, Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution, Phys. Chem. Chem. Phys. 15(2013) 2459-2465.
-
[17] J.J. Duan, Y. Zheng, S. Chen, et al., Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction, Chem. Commun. 49(2013) 7705-7707.[17] J.J. Duan, Y. Zheng, S. Chen, et al., Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction, Chem. Commun. 49(2013) 7705-7707.
-
[18] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science 332(2011) 443-447.[18] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science 332(2011) 443-447.
-
[19] H. Zhu, J. Yin, X.L. Wang, H.Y. Wang, X.R. Yang, Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors, Adv. Funct. Mater. 23(2013) 1305-1312.[19] H. Zhu, J. Yin, X.L. Wang, H.Y. Wang, X.R. Yang, Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors, Adv. Funct. Mater. 23(2013) 1305-1312.
-
[20] R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Tuneable porous carbonaceous materials from renewable resources, Chem. Soc. Rev. 38(2009) 3401-3418.[20] R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Tuneable porous carbonaceous materials from renewable resources, Chem. Soc. Rev. 38(2009) 3401-3418.
-
[21] L. Wang, Q.Y. Zhang, S.L. Chen, et al., Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials, Anal. Chem. 86(2014) 1414-1421.[21] L. Wang, Q.Y. Zhang, S.L. Chen, et al., Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials, Anal. Chem. 86(2014) 1414-1421.
-
[22] Y.L. Zhai, C.Z. Zhu, E.K. Wang, S.J. Dong, Energetic carbon-based hybrids:green and facile synthesis from soy milk and extraordinary electrocatalytic activity towards ORR, Nanoscale 6(2014) 2964-2970.[22] Y.L. Zhai, C.Z. Zhu, E.K. Wang, S.J. Dong, Energetic carbon-based hybrids:green and facile synthesis from soy milk and extraordinary electrocatalytic activity towards ORR, Nanoscale 6(2014) 2964-2970.
-
[23] C.Z. Zhu, J.F. Zhai, S.J. Dong, Bifunctional fluorescent carbon nanodots:green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction, Chem. Commun. 48(2012) 9367-9369.[23] C.Z. Zhu, J.F. Zhai, S.J. Dong, Bifunctional fluorescent carbon nanodots:green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction, Chem. Commun. 48(2012) 9367-9369.
-
[24] W.X. Yang, Y.L. Zhai, X.Y. Yue, Y.Z. Wang, J.B. Jia, From filter paper to porous carbon composite membrane oxygen reduction catalyst, Chem. Commun. 50(2014) 11151-11153.[24] W.X. Yang, Y.L. Zhai, X.Y. Yue, Y.Z. Wang, J.B. Jia, From filter paper to porous carbon composite membrane oxygen reduction catalyst, Chem. Commun. 50(2014) 11151-11153.
-
[25] H.S. Zhai, L. Cao, X.H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett. 24(2013) 103-106.[25] H.S. Zhai, L. Cao, X.H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett. 24(2013) 103-106.
-
[26] W.X. Yang, X.J. Liu, X.Y. Yue, J.B. Jia, S.J. Guo, Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction, J. Am. Chem. Soc. 137(2015) 1436-1439.[26] W.X. Yang, X.J. Liu, X.Y. Yue, J.B. Jia, S.J. Guo, Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction, J. Am. Chem. Soc. 137(2015) 1436-1439.
-
[27] M. Sobiesiak, Nanoporous carbons obtained by carbonization of copolymers impregnated by salts, Adsorption 19(2013) 349-356.[27] M. Sobiesiak, Nanoporous carbons obtained by carbonization of copolymers impregnated by salts, Adsorption 19(2013) 349-356.
-
[28] J. Su, Y.H. Gao, R.C. Che, Synthesis and microstructure of Fe3C encapsulated inside chain-like carbon nanocapsules, Mater. Lett. 64(2010) 680-683.[28] J. Su, Y.H. Gao, R.C. Che, Synthesis and microstructure of Fe3C encapsulated inside chain-like carbon nanocapsules, Mater. Lett. 64(2010) 680-683.
-
[29] J. Fournier, G. Lalande, R. Coté, D. Guay, J.P. Dodelet, Activation of various Febased precursors on carbon black and graphite supports to obtain catalysts for the reduction of oxygen in fuel cells, J. Electrochem. Soc. 144(1997) 218-226.[29] J. Fournier, G. Lalande, R. Coté, D. Guay, J.P. Dodelet, Activation of various Febased precursors on carbon black and graphite supports to obtain catalysts for the reduction of oxygen in fuel cells, J. Electrochem. Soc. 144(1997) 218-226.
-
[30] M. Bron, P. Bogdanoff, S. Fiechter, et al., Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction, J. Electroanal. Chem. 500(2001) 510-517.[30] M. Bron, P. Bogdanoff, S. Fiechter, et al., Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction, J. Electroanal. Chem. 500(2001) 510-517.
-
-

计量
- PDF下载量: 0
- 文章访问数: 979
- HTML全文浏览量: 1