An oxygen reduction sensor based on a novel type of porous carbon composite membrane electrode

En-Dong Xing Long-Qi Liang Yu-Jie Dong Wei-Min Huang

Citation:  En-Dong Xing, Long-Qi Liang, Yu-Jie Dong, Wei-Min Huang. An oxygen reduction sensor based on a novel type of porous carbon composite membrane electrode[J]. Chinese Chemical Letters, 2015, 26(10): 1322-1326. doi: 10.1016/j.cclet.2015.05.043 shu

An oxygen reduction sensor based on a novel type of porous carbon composite membrane electrode

    通讯作者: Wei-Min Huang,
  • 基金项目:

    We acknowledge financial supports from the National Natural Science Foundation of China (No. 21273097) (No. 21273097)

    the project from the State Key Laboratory of Electroanalytical Chemistry (No. 2013)  (No. 2013)

    the Science Foundation of Jilin Province (No. 20130204003GX). (No. 20130204003GX)

摘要: The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using a novel type of porous carbon composite membrane/glassy carbon electrode based on the low-cost common filter paper by a simple method. The resulting device exhibited excellent electrocatalytic activities toward the oxygen reduction reaction. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements demonstrated that the porous morphology and uniformly dispersed Fe3C nanoparticles of the PCCM play an important role in the oxygen reduction reaction. A linear response range from 2μmol/L up to 110 μmol/L and a detection limit of 1.4 μmol/L was obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation, was 3.0%. The successful fabrication of PCCM/GC electrode may promote the development of new porous carbon oxygen reduction reaction material for the oxygen reduction sensor.

English

  • 
    1. [1] W. Glasspool, J. Atkinson, A screen-printed amperometric dissolved oxygen sensor utilising an immobilised electrolyte gel and membrane, Sens. Actuators B:Chem. 48(1998) 308-317.[1] W. Glasspool, J. Atkinson, A screen-printed amperometric dissolved oxygen sensor utilising an immobilised electrolyte gel and membrane, Sens. Actuators B:Chem. 48(1998) 308-317.

    2. [2] R. Martínez-Máñez, J. Soto, J. Lizondo-Sabater, et al., New potentiomentric dissolved oxygen sensors in thick film technology, Sens. Actuators B:Chem. 101(2004) 295-301.[2] R. Martínez-Máñez, J. Soto, J. Lizondo-Sabater, et al., New potentiomentric dissolved oxygen sensors in thick film technology, Sens. Actuators B:Chem. 101(2004) 295-301.

    3. [3] S. Shanmugam, T. Osaka, Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules, Chem. Commun. 47(2011) 4463-4465.[3] S. Shanmugam, T. Osaka, Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules, Chem. Commun. 47(2011) 4463-4465.

    4. [4] A. Morozan, P. Jégou, S. Campidelli, S. Palacin, B. Jousselme, Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction, Chem. Commun. 48(2012) 4627-4629.[4] A. Morozan, P. Jégou, S. Campidelli, S. Palacin, B. Jousselme, Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction, Chem. Commun. 48(2012) 4627-4629.

    5. [5] Y. Hu, J.O. Jensen, W. Zhang, et al., Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts, Angew. Chem. Int. Ed. 53(2014) 3675-3679.[5] Y. Hu, J.O. Jensen, W. Zhang, et al., Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts, Angew. Chem. Int. Ed. 53(2014) 3675-3679.

    6. [6] Y.F. Zhang, X.J. Bo, C. Luhana, et al., Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability, Chem. Commun. 49(2013) 6885-6887.[6] Y.F. Zhang, X.J. Bo, C. Luhana, et al., Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability, Chem. Commun. 49(2013) 6885-6887.

    7. [7] Y.M. Tan, C.F. Xu, G.X. Chen, et al., Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction, Adv. Funct. Mater. 22(2012) 4584-4591.[7] Y.M. Tan, C.F. Xu, G.X. Chen, et al., Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction, Adv. Funct. Mater. 22(2012) 4584-4591.

    8. [8] Z.Y. Zhang, G.M. Veith, G.M. Brown, et al., Ionic liquid derived carbons as highly efficient oxygen reduction catalysts:first elucidation of pore size distribution dependent kinetics, Chem. Commun. 50(2014) 1469-1471.[8] Z.Y. Zhang, G.M. Veith, G.M. Brown, et al., Ionic liquid derived carbons as highly efficient oxygen reduction catalysts:first elucidation of pore size distribution dependent kinetics, Chem. Commun. 50(2014) 1469-1471.

    9. [9] J.T. Jin, F.P. Pan, L.H. Jiang, et al., Catalyst-free synthesis of crumpled boron and nitrogen Co-doped graphite layers with tunable bond structure for oxygen reduction reaction, ACS Nano 8(2014) 3313-3321.[9] J.T. Jin, F.P. Pan, L.H. Jiang, et al., Catalyst-free synthesis of crumpled boron and nitrogen Co-doped graphite layers with tunable bond structure for oxygen reduction reaction, ACS Nano 8(2014) 3313-3321.

    10. [10] S.K. Ramasahayam, U.B. Nasini, V. Bairi, A.U. Shaikh, T. Viswanathan, Microwave assisted synthesis and characterization of silicon and phosphorous Co-doped carbon as an electrocatalyst for oxygen reduction reaction, RSC Adv. 4(2014) 6306-6313.[10] S.K. Ramasahayam, U.B. Nasini, V. Bairi, A.U. Shaikh, T. Viswanathan, Microwave assisted synthesis and characterization of silicon and phosphorous Co-doped carbon as an electrocatalyst for oxygen reduction reaction, RSC Adv. 4(2014) 6306-6313.

    11. [11] L.T. Qu, Y. Liu, J.-B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano 4(2010) 1321-1326.[11] L.T. Qu, Y. Liu, J.-B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano 4(2010) 1321-1326.

    12. [12] S.M. Zhang, H.Y. Zhang, Q. Liu, S.L. Chen, Fe-N doped carbon nanotube/graphene composite:facile synthesis and superior electrocatalytic activity, J. Mater. Chem. A 1(2013) 3302-3308.[12] S.M. Zhang, H.Y. Zhang, Q. Liu, S.L. Chen, Fe-N doped carbon nanotube/graphene composite:facile synthesis and superior electrocatalytic activity, J. Mater. Chem. A 1(2013) 3302-3308.

    13. [13] K.I. Ozoemena, S.A. Mamuru, T. Fukuda, N. Kobayashi, T. Nyokong, Metal (Co, Fe) tribenzotetraazachlorin-fullerene conjugates:impact of direct π-bonding on the redox behaviour and oxygen reduction reaction, Electrochem. Commun. 11(2009) 1221-1225.[13] K.I. Ozoemena, S.A. Mamuru, T. Fukuda, N. Kobayashi, T. Nyokong, Metal (Co, Fe) tribenzotetraazachlorin-fullerene conjugates:impact of direct π-bonding on the redox behaviour and oxygen reduction reaction, Electrochem. Commun. 11(2009) 1221-1225.

    14. [14] Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano 4(2010) 1790-1798.[14] Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano 4(2010) 1790-1798.

    15. [15] W. Ding, Z.D. Wei, S.G. Chen, et al., Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction, Angew. Chem. Int. Ed. 52(2013) 11755-11759.[15] W. Ding, Z.D. Wei, S.G. Chen, et al., Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction, Angew. Chem. Int. Ed. 52(2013) 11755-11759.

    16. [16] X.J. Bo, L.P. Guo, Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution, Phys. Chem. Chem. Phys. 15(2013) 2459-2465.[16] X.J. Bo, L.P. Guo, Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution, Phys. Chem. Chem. Phys. 15(2013) 2459-2465.

    17. [17] J.J. Duan, Y. Zheng, S. Chen, et al., Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction, Chem. Commun. 49(2013) 7705-7707.[17] J.J. Duan, Y. Zheng, S. Chen, et al., Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction, Chem. Commun. 49(2013) 7705-7707.

    18. [18] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science 332(2011) 443-447.[18] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science 332(2011) 443-447.

    19. [19] H. Zhu, J. Yin, X.L. Wang, H.Y. Wang, X.R. Yang, Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors, Adv. Funct. Mater. 23(2013) 1305-1312.[19] H. Zhu, J. Yin, X.L. Wang, H.Y. Wang, X.R. Yang, Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors, Adv. Funct. Mater. 23(2013) 1305-1312.

    20. [20] R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Tuneable porous carbonaceous materials from renewable resources, Chem. Soc. Rev. 38(2009) 3401-3418.[20] R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Tuneable porous carbonaceous materials from renewable resources, Chem. Soc. Rev. 38(2009) 3401-3418.

    21. [21] L. Wang, Q.Y. Zhang, S.L. Chen, et al., Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials, Anal. Chem. 86(2014) 1414-1421.[21] L. Wang, Q.Y. Zhang, S.L. Chen, et al., Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials, Anal. Chem. 86(2014) 1414-1421.

    22. [22] Y.L. Zhai, C.Z. Zhu, E.K. Wang, S.J. Dong, Energetic carbon-based hybrids:green and facile synthesis from soy milk and extraordinary electrocatalytic activity towards ORR, Nanoscale 6(2014) 2964-2970.[22] Y.L. Zhai, C.Z. Zhu, E.K. Wang, S.J. Dong, Energetic carbon-based hybrids:green and facile synthesis from soy milk and extraordinary electrocatalytic activity towards ORR, Nanoscale 6(2014) 2964-2970.

    23. [23] C.Z. Zhu, J.F. Zhai, S.J. Dong, Bifunctional fluorescent carbon nanodots:green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction, Chem. Commun. 48(2012) 9367-9369.[23] C.Z. Zhu, J.F. Zhai, S.J. Dong, Bifunctional fluorescent carbon nanodots:green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction, Chem. Commun. 48(2012) 9367-9369.

    24. [24] W.X. Yang, Y.L. Zhai, X.Y. Yue, Y.Z. Wang, J.B. Jia, From filter paper to porous carbon composite membrane oxygen reduction catalyst, Chem. Commun. 50(2014) 11151-11153.[24] W.X. Yang, Y.L. Zhai, X.Y. Yue, Y.Z. Wang, J.B. Jia, From filter paper to porous carbon composite membrane oxygen reduction catalyst, Chem. Commun. 50(2014) 11151-11153.

    25. [25] H.S. Zhai, L. Cao, X.H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett. 24(2013) 103-106.[25] H.S. Zhai, L. Cao, X.H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett. 24(2013) 103-106.

    26. [26] W.X. Yang, X.J. Liu, X.Y. Yue, J.B. Jia, S.J. Guo, Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction, J. Am. Chem. Soc. 137(2015) 1436-1439.[26] W.X. Yang, X.J. Liu, X.Y. Yue, J.B. Jia, S.J. Guo, Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction, J. Am. Chem. Soc. 137(2015) 1436-1439.

    27. [27] M. Sobiesiak, Nanoporous carbons obtained by carbonization of copolymers impregnated by salts, Adsorption 19(2013) 349-356.[27] M. Sobiesiak, Nanoporous carbons obtained by carbonization of copolymers impregnated by salts, Adsorption 19(2013) 349-356.

    28. [28] J. Su, Y.H. Gao, R.C. Che, Synthesis and microstructure of Fe3C encapsulated inside chain-like carbon nanocapsules, Mater. Lett. 64(2010) 680-683.[28] J. Su, Y.H. Gao, R.C. Che, Synthesis and microstructure of Fe3C encapsulated inside chain-like carbon nanocapsules, Mater. Lett. 64(2010) 680-683.

    29. [29] J. Fournier, G. Lalande, R. Coté, D. Guay, J.P. Dodelet, Activation of various Febased precursors on carbon black and graphite supports to obtain catalysts for the reduction of oxygen in fuel cells, J. Electrochem. Soc. 144(1997) 218-226.[29] J. Fournier, G. Lalande, R. Coté, D. Guay, J.P. Dodelet, Activation of various Febased precursors on carbon black and graphite supports to obtain catalysts for the reduction of oxygen in fuel cells, J. Electrochem. Soc. 144(1997) 218-226.

    30. [30] M. Bron, P. Bogdanoff, S. Fiechter, et al., Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction, J. Electroanal. Chem. 500(2001) 510-517.[30] M. Bron, P. Bogdanoff, S. Fiechter, et al., Influence of selenium on the catalytic properties of ruthenium-based cluster catalysts for oxygen reduction, J. Electroanal. Chem. 500(2001) 510-517.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  979
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2015-06-03
  • 收稿日期:  2015-02-13
  • 网络出版日期:  2015-05-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章