Amphiphilic poly(ethylene glycol)-b-poly(ethylene brassylate) copolymers: One-pot synthesis, self-assembly, and controlled drug release

Jiu-Cun Chen Jun-Zhi Li Jian-Hua Liu Li-Qun Xu

Citation:  Jiu-Cun Chen, Jun-Zhi Li, Jian-Hua Liu, Li-Qun Xu. Amphiphilic poly(ethylene glycol)-b-poly(ethylene brassylate) copolymers: One-pot synthesis, self-assembly, and controlled drug release[J]. Chinese Chemical Letters, 2015, 26(10): 1319-1321. doi: 10.1016/j.cclet.2015.05.050 shu

Amphiphilic poly(ethylene glycol)-b-poly(ethylene brassylate) copolymers: One-pot synthesis, self-assembly, and controlled drug release

    通讯作者: Jiu-Cun Chen,
  • 基金项目:

    This work is financially supported by the Open Fund of State Key Laboratory of Medicinal Chemical Biology (Nankai University) under grant 20140523  (Nankai University)

摘要: A set of amphiphilic poly(ethylene glycol)-b-poly(ethylene brassylate) (PEG-b-PEB) copolymers based on the PEB hydrophobic block was first synthesized by ring-opening polymerization of ethylene brassylate with an organic catalyst. The EB/PEGmolar ratios and reaction times were adjusted to achieve different chain lengths of PEB. Block copolymers that were characterized by 1H NMR and GPC could selfassemble into multimorphological aggregates in aqueous solution, which were characterized by DLS and TEM. The hydrophobic doxorubicin (DOX) was chosen as a drug model and successfully encapsulated into the nanoparticles. The release kinetics of DOX were investigated.

English

  • 
    1. [1] Z.L. Tyrrell, Y.Q. Shen, M. Radosz, Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers, Prog. Polym. Sci. 35(2010) 1128-1143.[1] Z.L. Tyrrell, Y.Q. Shen, M. Radosz, Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers, Prog. Polym. Sci. 35(2010) 1128-1143.

    2. [2] J.C. Chen, M.Z. Liu, H.H. Gong, Y.J. Huang, C. Chen, Synthesis and self-assembly of thermoresponsive PEG-b-PNIPAM-b-PCL ABC triblock copolymer through the combination of atom transfer radical polymerization, ring-opening polymerization, and click chemistry, J. Phys. Chem. B 115(2011) 14947-14955.[2] J.C. Chen, M.Z. Liu, H.H. Gong, Y.J. Huang, C. Chen, Synthesis and self-assembly of thermoresponsive PEG-b-PNIPAM-b-PCL ABC triblock copolymer through the combination of atom transfer radical polymerization, ring-opening polymerization, and click chemistry, J. Phys. Chem. B 115(2011) 14947-14955.

    3. [3] Y. Zhou, H. Li, Y.W. Yang, Controlled drug delivery systems based on calixarenes, Chin. Chem. Lett. (2015), http://dx.doi.org/10.1016/j.cclet.2015.01.038.[3] Y. Zhou, H. Li, Y.W. Yang, Controlled drug delivery systems based on calixarenes, Chin. Chem. Lett. (2015), http://dx.doi.org/10.1016/j.cclet.2015.01.038.

    4. [4] X.B. Zhao, P. Liu, Reduction-responsive core-shell-corona micelles based on triblock copolymers:novel synthetic strategy, characterization, and application as a tumor microenvironment-responsive drug delivery system, ACS Appl. Mater. Interfaces 7(2015) 166-174.[4] X.B. Zhao, P. Liu, Reduction-responsive core-shell-corona micelles based on triblock copolymers:novel synthetic strategy, characterization, and application as a tumor microenvironment-responsive drug delivery system, ACS Appl. Mater. Interfaces 7(2015) 166-174.

    5. [5] J.B. Song, Z. Fang, C.X. Wang, et al., Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery, Nanoscale 5(2013) 5816-5824.[5] J.B. Song, Z. Fang, C.X. Wang, et al., Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery, Nanoscale 5(2013) 5816-5824.

    6. [6] G.H. Zhang, R.X. Hou, D.X. Zhan, et al., Fabrication of hollow porous PLGA microspheres for controlled protein release and promotion of cell compatibility, Chin. Chem. Lett. 24(2013) 710-714.[6] G.H. Zhang, R.X. Hou, D.X. Zhan, et al., Fabrication of hollow porous PLGA microspheres for controlled protein release and promotion of cell compatibility, Chin. Chem. Lett. 24(2013) 710-714.

    7. [7] A. Pascual, H. Sardon, A. Veloso, F. Ruipérez, D. Mecerreyes, Organocatalyzed synthesis of aliphatic polyesters from ethylene brassylate:a cheap and renewable macrolactone, ACS Macro Lett. 3(2014) 849-853.[7] A. Pascual, H. Sardon, A. Veloso, F. Ruipérez, D. Mecerreyes, Organocatalyzed synthesis of aliphatic polyesters from ethylene brassylate:a cheap and renewable macrolactone, ACS Macro Lett. 3(2014) 849-853.

    8. [8] A. Pascual, H. Sardon, F. Ruiperez, et al., Experimental and computational studies of ring-opening polymerization of ethylene brassylate macrolactone and copolymerization with ε-caprolactone and TBD-guanidine organic catalyst, J. Polym. Sci. A:Polym. Chem. 53(2015) 552-561.[8] A. Pascual, H. Sardon, F. Ruiperez, et al., Experimental and computational studies of ring-opening polymerization of ethylene brassylate macrolactone and copolymerization with ε-caprolactone and TBD-guanidine organic catalyst, J. Polym. Sci. A:Polym. Chem. 53(2015) 552-561.

    9. [9] J.C. Chen, M.Z. Liu, Amphiphilic block copolymer micelles with fluorescence as nano-carriers for doxorubicin delivery, RSC Adv. 4(2014) 9684-9692.[9] J.C. Chen, M.Z. Liu, Amphiphilic block copolymer micelles with fluorescence as nano-carriers for doxorubicin delivery, RSC Adv. 4(2014) 9684-9692.

    10. [10] D.E. Discher, A. Eisenberg, Polymer vesicles, Science 297(2002) 967-973.[10] D.E. Discher, A. Eisenberg, Polymer vesicles, Science 297(2002) 967-973.

    11. [11] F.H. Meng, Z.Y. Zhong, J. Feijen, Stimuli-responsive polymersomes for programmed drug delivery, Biomacromolecules 10(2009) 197-209.[11] F.H. Meng, Z.Y. Zhong, J. Feijen, Stimuli-responsive polymersomes for programmed drug delivery, Biomacromolecules 10(2009) 197-209.

    12. [12] R.P. Brinkhuis, F.P.J.T. Rutjes, J.C.M. van Hest, Polymeric vesicles in biomedical applications, Polym. Chem. 2(2011) 1449-1462.[12] R.P. Brinkhuis, F.P.J.T. Rutjes, J.C.M. van Hest, Polymeric vesicles in biomedical applications, Polym. Chem. 2(2011) 1449-1462.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1293
  • HTML全文浏览量:  91
文章相关
  • 发布日期:  2015-06-04
  • 收稿日期:  2015-03-16
  • 网络出版日期:  2015-05-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章