
Amphiphilic poly(ethylene glycol)-b-poly(ethylene brassylate) copolymers: One-pot synthesis, self-assembly, and controlled drug release
English
Amphiphilic poly(ethylene glycol)-b-poly(ethylene brassylate) copolymers: One-pot synthesis, self-assembly, and controlled drug release
-
Key words:
- Poly(ethylene brassylate)
- / Self-assembly
- / Nanoparticles
- / Controlled drug release
-
-
-
[1] Z.L. Tyrrell, Y.Q. Shen, M. Radosz, Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers, Prog. Polym. Sci. 35(2010) 1128-1143.[1] Z.L. Tyrrell, Y.Q. Shen, M. Radosz, Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers, Prog. Polym. Sci. 35(2010) 1128-1143.
-
[2] J.C. Chen, M.Z. Liu, H.H. Gong, Y.J. Huang, C. Chen, Synthesis and self-assembly of thermoresponsive PEG-b-PNIPAM-b-PCL ABC triblock copolymer through the combination of atom transfer radical polymerization, ring-opening polymerization, and click chemistry, J. Phys. Chem. B 115(2011) 14947-14955.[2] J.C. Chen, M.Z. Liu, H.H. Gong, Y.J. Huang, C. Chen, Synthesis and self-assembly of thermoresponsive PEG-b-PNIPAM-b-PCL ABC triblock copolymer through the combination of atom transfer radical polymerization, ring-opening polymerization, and click chemistry, J. Phys. Chem. B 115(2011) 14947-14955.
-
[3] Y. Zhou, H. Li, Y.W. Yang, Controlled drug delivery systems based on calixarenes, Chin. Chem. Lett. (2015), http://dx.doi.org/10.1016/j.cclet.2015.01.038.[3] Y. Zhou, H. Li, Y.W. Yang, Controlled drug delivery systems based on calixarenes, Chin. Chem. Lett. (2015), http://dx.doi.org/10.1016/j.cclet.2015.01.038.
-
[4] X.B. Zhao, P. Liu, Reduction-responsive core-shell-corona micelles based on triblock copolymers:novel synthetic strategy, characterization, and application as a tumor microenvironment-responsive drug delivery system, ACS Appl. Mater. Interfaces 7(2015) 166-174.[4] X.B. Zhao, P. Liu, Reduction-responsive core-shell-corona micelles based on triblock copolymers:novel synthetic strategy, characterization, and application as a tumor microenvironment-responsive drug delivery system, ACS Appl. Mater. Interfaces 7(2015) 166-174.
-
[5] J.B. Song, Z. Fang, C.X. Wang, et al., Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery, Nanoscale 5(2013) 5816-5824.[5] J.B. Song, Z. Fang, C.X. Wang, et al., Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery, Nanoscale 5(2013) 5816-5824.
-
[6] G.H. Zhang, R.X. Hou, D.X. Zhan, et al., Fabrication of hollow porous PLGA microspheres for controlled protein release and promotion of cell compatibility, Chin. Chem. Lett. 24(2013) 710-714.[6] G.H. Zhang, R.X. Hou, D.X. Zhan, et al., Fabrication of hollow porous PLGA microspheres for controlled protein release and promotion of cell compatibility, Chin. Chem. Lett. 24(2013) 710-714.
-
[7] A. Pascual, H. Sardon, A. Veloso, F. Ruipérez, D. Mecerreyes, Organocatalyzed synthesis of aliphatic polyesters from ethylene brassylate:a cheap and renewable macrolactone, ACS Macro Lett. 3(2014) 849-853.[7] A. Pascual, H. Sardon, A. Veloso, F. Ruipérez, D. Mecerreyes, Organocatalyzed synthesis of aliphatic polyesters from ethylene brassylate:a cheap and renewable macrolactone, ACS Macro Lett. 3(2014) 849-853.
-
[8] A. Pascual, H. Sardon, F. Ruiperez, et al., Experimental and computational studies of ring-opening polymerization of ethylene brassylate macrolactone and copolymerization with ε-caprolactone and TBD-guanidine organic catalyst, J. Polym. Sci. A:Polym. Chem. 53(2015) 552-561.[8] A. Pascual, H. Sardon, F. Ruiperez, et al., Experimental and computational studies of ring-opening polymerization of ethylene brassylate macrolactone and copolymerization with ε-caprolactone and TBD-guanidine organic catalyst, J. Polym. Sci. A:Polym. Chem. 53(2015) 552-561.
-
[9] J.C. Chen, M.Z. Liu, Amphiphilic block copolymer micelles with fluorescence as nano-carriers for doxorubicin delivery, RSC Adv. 4(2014) 9684-9692.[9] J.C. Chen, M.Z. Liu, Amphiphilic block copolymer micelles with fluorescence as nano-carriers for doxorubicin delivery, RSC Adv. 4(2014) 9684-9692.
-
[10] D.E. Discher, A. Eisenberg, Polymer vesicles, Science 297(2002) 967-973.[10] D.E. Discher, A. Eisenberg, Polymer vesicles, Science 297(2002) 967-973.
-
[11] F.H. Meng, Z.Y. Zhong, J. Feijen, Stimuli-responsive polymersomes for programmed drug delivery, Biomacromolecules 10(2009) 197-209.[11] F.H. Meng, Z.Y. Zhong, J. Feijen, Stimuli-responsive polymersomes for programmed drug delivery, Biomacromolecules 10(2009) 197-209.
-
[12] R.P. Brinkhuis, F.P.J.T. Rutjes, J.C.M. van Hest, Polymeric vesicles in biomedical applications, Polym. Chem. 2(2011) 1449-1462.[12] R.P. Brinkhuis, F.P.J.T. Rutjes, J.C.M. van Hest, Polymeric vesicles in biomedical applications, Polym. Chem. 2(2011) 1449-1462.
-
-

计量
- PDF下载量: 0
- 文章访问数: 1293
- HTML全文浏览量: 91