
Synthesis and biological evaluation of novel phenothiazine derivatives as non-peptide arginine vasopressin V2 receptor antagonists
English
Synthesis and biological evaluation of novel phenothiazine derivatives as non-peptide arginine vasopressin V2 receptor antagonists
-
-
-
[1] G. Decaux, A. Soupart, G. Vassart, Non-peptide arginine-vasopressin antagonists: the vaptans, Lancet 371 (2008) 1624-1632.[1] G. Decaux, A. Soupart, G. Vassart, Non-peptide arginine-vasopressin antagonists: the vaptans, Lancet 371 (2008) 1624-1632.
-
[2] A. Dietrich, S. Mathia, H. Kaminski, et al., Chronic activation of vasopressin V2 receptor signalling lowers renal medullary oxygen levels in rats, Acta Physiol. 207 (2013) 721-731.[2] A. Dietrich, S. Mathia, H. Kaminski, et al., Chronic activation of vasopressin V2 receptor signalling lowers renal medullary oxygen levels in rats, Acta Physiol. 207 (2013) 721-731.
-
[3] C. Vaidya, W. Ho, B.J. Freda, Management of hyponatremia: providing treatment and avoiding harm, Clevel. Clin. J. Med. 77 (2010) 715-726.[3] C. Vaidya, W. Ho, B.J. Freda, Management of hyponatremia: providing treatment and avoiding harm, Clevel. Clin. J. Med. 77 (2010) 715-726.
-
[4] A.A. Rabinstein, N. Bruder, Management of hyponatremia and volume contraction, Neurocrit. Care 15 (2011) 354-360.[4] A.A. Rabinstein, N. Bruder, Management of hyponatremia and volume contraction, Neurocrit. Care 15 (2011) 354-360.
-
[5] S.K. Kumar, P.J. Mather, AVP receptor antagonists in patients with CHF, Heart Fail. Rev. 14 (2009) 83-86.[5] S.K. Kumar, P.J. Mather, AVP receptor antagonists in patients with CHF, Heart Fail. Rev. 14 (2009) 83-86.
-
[6] B. Bishara, H. Shiekh, T. Karram, et al., Effects of novel vasopressin receptor antagonists on renal function and cardiac hypertrophy in rats with experimental congestive heart failure, J. Pharmacol. Exp. Ther. 326 (2008) 414-422.[6] B. Bishara, H. Shiekh, T. Karram, et al., Effects of novel vasopressin receptor antagonists on renal function and cardiac hypertrophy in rats with experimental congestive heart failure, J. Pharmacol. Exp. Ther. 326 (2008) 414-422.
-
[7] E. Higashihara, V.E. Torres, A.B. Chapman, et al., Tolvaptan in autosomal dominant polycystic kidney disease: three years’ experience, Clin. J. Am. Soc. Nephrol. 6 (2011) 2499-2507.[7] E. Higashihara, V.E. Torres, A.B. Chapman, et al., Tolvaptan in autosomal dominant polycystic kidney disease: three years’ experience, Clin. J. Am. Soc. Nephrol. 6 (2011) 2499-2507.
-
[8] A. Soupart,M. Coffernils, B. Couturier, F. Gankam-Kengne, G. Decaux, Efficacy and tolerance of urea compared with vaptans for long-term treatment of patients with SIADH, Clin. J. Am. Soc. Nephrol. 7 (2012) 742-747.[8] A. Soupart,M. Coffernils, B. Couturier, F. Gankam-Kengne, G. Decaux, Efficacy and tolerance of urea compared with vaptans for long-term treatment of patients with SIADH, Clin. J. Am. Soc. Nephrol. 7 (2012) 742-747.
-
[9] F. Ali, M.A. Raufi, B. Washington, J.K. Ghali, Conivaptan: a dual receptor vasopressin V-1a/V-2 antagonist, Cardiovasc. Drug Rev. 25 (2007) 261-279.[9] F. Ali, M.A. Raufi, B. Washington, J.K. Ghali, Conivaptan: a dual receptor vasopressin V-1a/V-2 antagonist, Cardiovasc. Drug Rev. 25 (2007) 261-279.
-
[10] R.W. Schrier, P. Gross, M. Gheorghiade, et al., a selective oral vasopressin V-2-receptor antagonist, for hyponatremia, N. Engl. J. Med. 355 (2006) 2099- 2112.[10] R.W. Schrier, P. Gross, M. Gheorghiade, et al., a selective oral vasopressin V-2-receptor antagonist, for hyponatremia, N. Engl. J. Med. 355 (2006) 2099- 2112.
-
[11] B.T. Bowman, M.H. Rosner, Lixivaptan-an evidence-based review of its clinical potential in the treatment of hyponatremia, Core Evid. 8 (2013) 47-56.[11] B.T. Bowman, M.H. Rosner, Lixivaptan-an evidence-based review of its clinical potential in the treatment of hyponatremia, Core Evid. 8 (2013) 47-56.
-
[12] A.L. Crombie, T.M. Antrilli, B.A. Campbell, et al., Synthesis and evaluation of azabicyclo 3.2.1 octane derivatives as potent mixed vasopressin antagonists, Bioorg. Med. Chem. Lett. 20 (2010) 3742-3745.[12] A.L. Crombie, T.M. Antrilli, B.A. Campbell, et al., Synthesis and evaluation of azabicyclo 3.2.1 octane derivatives as potent mixed vasopressin antagonists, Bioorg. Med. Chem. Lett. 20 (2010) 3742-3745.
-
[13] I. Tsukamoto, H. Koshio, T. Kuramochi, et al., Synthesis and structure-activity relationships of amide derivatives of (4,4-difluoro-1,2,3,4-tetrahydro-5H-1-benzazepin- 5-ylidene)acetic acid as selective arginine vasopressin V-2 receptor agonists, Bioorg. Med. Chem. 17 (2009) 3130-3141.[13] I. Tsukamoto, H. Koshio, T. Kuramochi, et al., Synthesis and structure-activity relationships of amide derivatives of (4,4-difluoro-1,2,3,4-tetrahydro-5H-1-benzazepin- 5-ylidene)acetic acid as selective arginine vasopressin V-2 receptor agonists, Bioorg. Med. Chem. 17 (2009) 3130-3141.
-
[14] A.A. Failli, J.S. Shumsky, R.J. Steffan, et al., Pyridobenzodiazepines: a novel class of orally active, vasopressin V-2 receptor selective agonists, Bioorg. Med. Chem. Lett. 16 (2006) 954-959.[14] A.A. Failli, J.S. Shumsky, R.J. Steffan, et al., Pyridobenzodiazepines: a novel class of orally active, vasopressin V-2 receptor selective agonists, Bioorg. Med. Chem. Lett. 16 (2006) 954-959.
-
[15] A.M. Venkatesan, G.T. Grosu, A.A. Failli, et al., (4-Substituted-phenyl)-(5H- 10,11-dihydro-pyrrolo 2,1-c 1,4 benzodiazepin-1'-yl)-methanone derivatives as vasopressin receptor modulators, Bioorg. Med. Chem. Lett. 15 (2005) 5003- 5006.[15] A.M. Venkatesan, G.T. Grosu, A.A. Failli, et al., (4-Substituted-phenyl)-(5H- 10,11-dihydro-pyrrolo 2,1-c 1,4 benzodiazepin-1'-yl)-methanone derivatives as vasopressin receptor modulators, Bioorg. Med. Chem. Lett. 15 (2005) 5003- 5006.
-
[16] M.J. Urbanski, R.H. Chen, K.T. Demarest, et al., 2,5-disubstituted 3,4-dihydro-2Hbenzo b 1,4 thiazepines as potent and selective V-2 arginine vasopressin receptor antagonists, Bioorg. Med. Chem. Lett. 13 (2003) 4031-4034.[16] M.J. Urbanski, R.H. Chen, K.T. Demarest, et al., 2,5-disubstituted 3,4-dihydro-2Hbenzo b 1,4 thiazepines as potent and selective V-2 arginine vasopressin receptor antagonists, Bioorg. Med. Chem. Lett. 13 (2003) 4031-4034.
-
[17] S. Luk, R.S. Atayee, J.D. Ma, B.M. Best, Urinary diazepam metabolite distribution in a chronic pain population, J. Anal. Toxicol. 38 (2014) 135-142.[17] S. Luk, R.S. Atayee, J.D. Ma, B.M. Best, Urinary diazepam metabolite distribution in a chronic pain population, J. Anal. Toxicol. 38 (2014) 135-142.
-
[18] M. Burnier, A.F. Fricker, D. Hayoz, J. Nussberger, H.R. Brunner, Pharmacokinetic and pharmacodynamic effects of YM087, a combined V1/V2 vasopressin receptor antagonist in normal subjects, Eur. J. Clin. Pharmacol. 55 (1999) 633- 637.[18] M. Burnier, A.F. Fricker, D. Hayoz, J. Nussberger, H.R. Brunner, Pharmacokinetic and pharmacodynamic effects of YM087, a combined V1/V2 vasopressin receptor antagonist in normal subjects, Eur. J. Clin. Pharmacol. 55 (1999) 633- 637.
-
[19] S. Nodari, G.T. Jao, J.R. Chiong, Clinical utility of tolvaptan in the management of hyponatremia in heart failure patients, Int. J. Nephrol. Renovasc. Dis. 3 (2010) 51- 60.[19] S. Nodari, G.T. Jao, J.R. Chiong, Clinical utility of tolvaptan in the management of hyponatremia in heart failure patients, Int. J. Nephrol. Renovasc. Dis. 3 (2010) 51- 60.
-
[20] S. Mu, Y. Liu, M. Gong, D.K. Liu, C.X. Liu, Synthesis and biological evaluation of substituted desloratadines as potent arginine vasopressin V2 receptor antagonists, Molecules 19 (2014) 2694-2706.[20] S. Mu, Y. Liu, M. Gong, D.K. Liu, C.X. Liu, Synthesis and biological evaluation of substituted desloratadines as potent arginine vasopressin V2 receptor antagonists, Molecules 19 (2014) 2694-2706.
-
[21] S. Mu, X. S. Xie, D. Niu, et al., Synthesis and biological evaluation of novel derivatives of desloratadine, Chin. Chem. Lett. 24 (2013) 531-534.[21] S. Mu, X. S. Xie, D. Niu, et al., Synthesis and biological evaluation of novel derivatives of desloratadine, Chin. Chem. Lett. 24 (2013) 531-534.
-
-

计量
- PDF下载量: 0
- 文章访问数: 829
- HTML全文浏览量: 6