Electroanalytical method for determination of shikonin based on the enhancement effect of cyclodextrin functionalized carbon nanotubes

Yan-Sha Gao Li-Ping Wu Kai-Xin Zhang Jing-Kun Xu Li-Min Lu Xiao-Fei Zhu Yao Wu

Citation:  Yan-Sha Gao, Li-Ping Wu, Kai-Xin Zhang, Jing-Kun Xu, Li-Min Lu, Xiao-Fei Zhu, Yao Wu. Electroanalytical method for determination of shikonin based on the enhancement effect of cyclodextrin functionalized carbon nanotubes[J]. Chinese Chemical Letters, 2015, 26(5): 613-618. doi: 10.1016/j.cclet.2014.11.032 shu

Electroanalytical method for determination of shikonin based on the enhancement effect of cyclodextrin functionalized carbon nanotubes

    通讯作者: Jing-Kun Xu,
    Li-Min Lu,
  • 基金项目:

    We are grateful to the National Natural Science Foundation of China (No. 51302117) (No. 51302117)

    Jiangxi Provincial Department of Education (No. GJJ13258) (No. GJJ13258)

    Postdoctoral Science Foundation of China (No. 2014M551857) (No. 2014M551857)

    ing Plan of Universities in Jiangxi province (No. KJLD12081) for their financial support of this work. (No. KJLD12081)

摘要: A simple and sensitive electroanalytical method for determination of shikonin, a widely used antitumoral agent, using β-cyclodextrin-functionalized multiwalled carbon nanotubes composite modified glassy carbon electrodes (MWCNTs/β-CD/GCE) was presented. CDs are water-soluble and environmentally friendly and can improve the dispersibility of MWCNTs/β-CD functional materials, which was confirmed by SEM. The electrochemical behaviors of shikonin on different electrodes were investigated by cyclic voltammetry (CV) and differential pulse voltammograms (DPVs). The results demonstrated that the redox peak currents of shikonin obtained at MWCNTs/β-CD/GCE were much higher than those at the β-CD/GCE and MWCNTs/GCE, which can be attributed to the combination of the excellent electrocatalytic properties of MWCNTs and the molecular recognition ability of β-CD. At MWCNTs/β-CD/GCE, the response current exhibits a linear range from 5.0 nmol/L to 10.0 μmol/L with a detection limit of 1.0 nmol/L (S/N = 3). As a practical application, the proposed method was applied to quantitatively determine shikoninin urine samples with satisfying results.

English

  • 
    1. [1] V.P. Papageorgiou, A.N. Assimopoulou, E.A. Couladouros, et al., The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products, Angew. Chem. Int. Ed. 38 (1999) 270-301.[1] V.P. Papageorgiou, A.N. Assimopoulou, E.A. Couladouros, et al., The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products, Angew. Chem. Int. Ed. 38 (1999) 270-301.

    2. [2] L.P. Wu, L.M. Lu, J.K. Xu, et al., Electrochemical determination of the anticancer herbal drug shikonin at a nanostructured poly(hydroxymethylated-3,4-ethylenedioxythiophene) modified electrode, Electroanalysis 25 (2013) 2244-2250.[2] L.P. Wu, L.M. Lu, J.K. Xu, et al., Electrochemical determination of the anticancer herbal drug shikonin at a nanostructured poly(hydroxymethylated-3,4-ethylenedioxythiophene) modified electrode, Electroanalysis 25 (2013) 2244-2250.

    3. [3] J. Han, X.C. Weng, K.S. Bi, Antioxidants from a Chinese medicinal herb - Lithospermum erythrorhizon, Food Chem. 106 (2008) 2-10.[3] J. Han, X.C. Weng, K.S. Bi, Antioxidants from a Chinese medicinal herb - Lithospermum erythrorhizon, Food Chem. 106 (2008) 2-10.

    4. [4] Y. Hu, Z.H. Jiang, K.S.Y. Leung, Z.Z. Zhao, Simultaneous determination of naphthoquinone derivatives in boraginaceous herbs by high-performance liquid chromatography, Anal. Chim. Acta 577 (2006) 26-31.[4] Y. Hu, Z.H. Jiang, K.S.Y. Leung, Z.Z. Zhao, Simultaneous determination of naphthoquinone derivatives in boraginaceous herbs by high-performance liquid chromatography, Anal. Chim. Acta 577 (2006) 26-31.

    5. [5] Y.I. Huang, Y.H. Cheng, C.C. Yu, T.R. Tsai, T.M. Cham, Microencapsulation of extract containing shikonin using gelatin-acacia coacervation method: a formaldehydefree approach, Colloids Surf. B 58 (2007) 290-297.[5] Y.I. Huang, Y.H. Cheng, C.C. Yu, T.R. Tsai, T.M. Cham, Microencapsulation of extract containing shikonin using gelatin-acacia coacervation method: a formaldehydefree approach, Colloids Surf. B 58 (2007) 290-297.

    6. [6] N. Sharma, U.K. Sharma, A.P. Gupta, et al., Simultaneous densitometric determination of shikonin, acetylshikonin, and β-acetoxyisovaleryl-shikonin in ultrasonic- assisted extracts of four Arnebia species using reversed-phase thin layer chromatography, J. Sep. Sci. 32 (2009) 3239-3245.[6] N. Sharma, U.K. Sharma, A.P. Gupta, et al., Simultaneous densitometric determination of shikonin, acetylshikonin, and β-acetoxyisovaleryl-shikonin in ultrasonic- assisted extracts of four Arnebia species using reversed-phase thin layer chromatography, J. Sep. Sci. 32 (2009) 3239-3245.

    7. [7] H. Yamamoto, K. Yazaki, K. Inoue, Simultaneous analysis of shikimate-derived secondary metabolites in Lithospermum erythrorhizon cell suspension cultures by high-performance liquid chromatography, J. Chromatogr. B 738 (2000) 3-15.[7] H. Yamamoto, K. Yazaki, K. Inoue, Simultaneous analysis of shikimate-derived secondary metabolites in Lithospermum erythrorhizon cell suspension cultures by high-performance liquid chromatography, J. Chromatogr. B 738 (2000) 3-15.

    8. [8] Y. Sun, T. Guo, Y. Sui, F.M. Li, Quantitative determination of rutin, quercetin, and adenosine inFlos Carthamiby capillary electrophoresis, J, Sep. Sci. 26 (2003) 1203- 1206.[8] Y. Sun, T. Guo, Y. Sui, F.M. Li, Quantitative determination of rutin, quercetin, and adenosine inFlos Carthamiby capillary electrophoresis, J, Sep. Sci. 26 (2003) 1203- 1206.

    9. [9] B.R. Lichtenstein, J.F. Cerda, R.L. Koder, P. Leslie Dutton, Reversible proton coupled electron transfer in a peptide-incorporated naphthoquinone amino acid, Chem. Commun. 2 (2009) 168-170.[9] B.R. Lichtenstein, J.F. Cerda, R.L. Koder, P. Leslie Dutton, Reversible proton coupled electron transfer in a peptide-incorporated naphthoquinone amino acid, Chem. Commun. 2 (2009) 168-170.

    10. [10] R. Chaisuksant, A. Voulgaropoulos, A.S. Mellidis, V.P. Papegeorgiou, Voltammetric determination of total alkannin using a glassy carbon electrode, Analyst 118 (1993) 179-182.[10] R. Chaisuksant, A. Voulgaropoulos, A.S. Mellidis, V.P. Papegeorgiou, Voltammetric determination of total alkannin using a glassy carbon electrode, Analyst 118 (1993) 179-182.

    11. [11] P.M. Ajayan, Nanotubes from carbon, Chem. Rev. 99 (1999) 1787-1800.[11] P.M. Ajayan, Nanotubes from carbon, Chem. Rev. 99 (1999) 1787-1800.

    12. [12] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531.[12] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531.

    13. [13] C. Wei, L.M. Dai, A. Roy, T. Tia Benson, Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites, J. Am. Chem. Soc. 128 (2006) 1412-1413.[13] C. Wei, L.M. Dai, A. Roy, T. Tia Benson, Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites, J. Am. Chem. Soc. 128 (2006) 1412-1413.

    14. [14] K.X. Zhang, L.M. Lu, J.K. Xu, et al., Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of azithromycin, Anal. Chim. Acta 787 (2013) 50-56.[14] K.X. Zhang, L.M. Lu, J.K. Xu, et al., Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of azithromycin, Anal. Chim. Acta 787 (2013) 50-56.

    15. [15] Q.W. Li, J. Zhang, H. Yan, M.S. He, Z.F. Liu, Thionine-mediated chemistry of carbon nanotubes, Carbon 42 (2004) 287-291.[15] Q.W. Li, J. Zhang, H. Yan, M.S. He, Z.F. Liu, Thionine-mediated chemistry of carbon nanotubes, Carbon 42 (2004) 287-291.

    16. [16] J. Zhang, J.K. Lee, Y. Wu, R.W. Murray, Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes, Nano Lett. 3 (2003) 403-407.[16] J. Zhang, J.K. Lee, Y. Wu, R.W. Murray, Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes, Nano Lett. 3 (2003) 403-407.

    17. [17] J.L. He, Y. Yang, X. Yang, et al., β-Cyclodextrin incorporated carbon nanotubemodified electrode as an electrochemical sensor for rutin, Sens. Actuators B 114 (2006) 94-100.[17] J.L. He, Y. Yang, X. Yang, et al., β-Cyclodextrin incorporated carbon nanotubemodified electrode as an electrochemical sensor for rutin, Sens. Actuators B 114 (2006) 94-100.

    18. [18] Y.J. Guo, S.J. Guo, J. Li, E.K. Wang, S.J. Dong, Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim, Talanta 84 (2011) 60-64.[18] Y.J. Guo, S.J. Guo, J. Li, E.K. Wang, S.J. Dong, Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim, Talanta 84 (2011) 60-64.

    19. [19] C.M. Moraes, P. Abrami, E. dePaula, A. Braga, L. Fraceto, Study of the interaction between S(-) bupivacaine and 2-hydroxypropyl-β-cyclodextrin, Int. J. Pharm. 331 (2007) 99-106.[19] C.M. Moraes, P. Abrami, E. dePaula, A. Braga, L. Fraceto, Study of the interaction between S(-) bupivacaine and 2-hydroxypropyl-β-cyclodextrin, Int. J. Pharm. 331 (2007) 99-106.

    20. [20] C.C. Harley, A.D. Rooney, C.B. Breslin, The selective detection of dopamine at a polypyrrole film doped with sulfonated β-cyclodextrins, Sens. Actuators B 150 (2010) 498-504.[20] C.C. Harley, A.D. Rooney, C.B. Breslin, The selective detection of dopamine at a polypyrrole film doped with sulfonated β-cyclodextrins, Sens. Actuators B 150 (2010) 498-504.

    21. [21] J. Zhao, J.S. Jin, C.H. Wu, et al., Highly sensitive identification of cancer cells by combining the new tetrathiafulvalene derivative with a β-cyclodextrin/multiwalled carbon nanotubes modified GCE, Analyst 135 (2010) 2965-2969.[21] J. Zhao, J.S. Jin, C.H. Wu, et al., Highly sensitive identification of cancer cells by combining the new tetrathiafulvalene derivative with a β-cyclodextrin/multiwalled carbon nanotubes modified GCE, Analyst 135 (2010) 2965-2969.

    22. [22] A. Abbaspour, A. Noori, A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine, Biosens. Bioelectron. 26 (2011) 4674-4680.[22] A. Abbaspour, A. Noori, A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine, Biosens. Bioelectron. 26 (2011) 4674-4680.

    23. [23] Y.J. Guo, S.J. Guo, J.T. Ren, et al., Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: Synthesis and host-guest inclusion for enhanced electrochemical performance, ACS Nano 4 (2010) 4001- 4010.[23] Y.J. Guo, S.J. Guo, J.T. Ren, et al., Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: Synthesis and host-guest inclusion for enhanced electrochemical performance, ACS Nano 4 (2010) 4001- 4010.

    24. [24] B. Cappello, C. Carmignani, M. Iervolino, M. Immacolata La Rotonda, M. Fabrizio Saettone, Solubilization of tropicamide by hydroxypropyl-β-cyclodextrin and water-soluble polymers: in vitro/in vivo studies, Int. J. Pharm. 213 (2001) 75-81.[24] B. Cappello, C. Carmignani, M. Iervolino, M. Immacolata La Rotonda, M. Fabrizio Saettone, Solubilization of tropicamide by hydroxypropyl-β-cyclodextrin and water-soluble polymers: in vitro/in vivo studies, Int. J. Pharm. 213 (2001) 75-81.

    25. [25] X.M. Xu, Z. Liu, X. Zhang, et al., β-Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers, Electrochim. Acta 58 (2011) 142-149.[25] X.M. Xu, Z. Liu, X. Zhang, et al., β-Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers, Electrochim. Acta 58 (2011) 142-149.

    26. [26] G.A. Rivas, M.D. Rubianes, M.C. Rodríguez, et al., Carbon nanotubes for electrochemical biosensing, Talanta 74 (2007) 291-307.[26] G.A. Rivas, M.D. Rubianes, M.C. Rodríguez, et al., Carbon nanotubes for electrochemical biosensing, Talanta 74 (2007) 291-307.

    27. [27] K. Liu, H. Fu, Y. Xie, et al., Assembly of β-cyclodextrins acting as molecular bricks onto multiwall carbon nanotubes, J. Phys. Chem. C 112 (2008) 951-957.[27] K. Liu, H. Fu, Y. Xie, et al., Assembly of β-cyclodextrins acting as molecular bricks onto multiwall carbon nanotubes, J. Phys. Chem. C 112 (2008) 951-957.

    28. [28] G. Alarcón-Angeles, B. Pérez-López, M. Palomar-Pardave, et al., Enhanced host- guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes, Carbon 46 (2008) 898-906.[28] G. Alarcón-Angeles, B. Pérez-López, M. Palomar-Pardave, et al., Enhanced host- guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes, Carbon 46 (2008) 898-906.

    29. [29] Y. Gao, Y. Cao, D.G. Yang, et al., Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode, J. Hazard. Mater. 199-200 (2012) 111-118.[29] Y. Gao, Y. Cao, D.G. Yang, et al., Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode, J. Hazard. Mater. 199-200 (2012) 111-118.

    30. [30] Y.C. Zhao, X.Y. Song, Q.S. Song, Z.L. Yin, A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant, CrystEngComm 14 (2012) 6710-6719.[30] Y.C. Zhao, X.Y. Song, Q.S. Song, Z.L. Yin, A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant, CrystEngComm 14 (2012) 6710-6719.

    31. [31] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. 101 (1979) 19-28.[31] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. 101 (1979) 19-28.

    32. [32] J. An, J.P. Li, W.X. Chen, et al., Electrochemical study and application on shikonin at poly(diallyldimethylammoniumchloride) functionalized graphene sheets modified glass carbon electrode, Chem. Res. Chin. Univ. 29 (2013) 798- 805.[32] J. An, J.P. Li, W.X. Chen, et al., Electrochemical study and application on shikonin at poly(diallyldimethylammoniumchloride) functionalized graphene sheets modified glass carbon electrode, Chem. Res. Chin. Univ. 29 (2013) 798- 805.

    33. [33] H.B. Zhou, J.Y. Wang, B.X. Yea, Electrochemical investigation of redox reactions of herbal drug Shikonin and its determination in pharmaceutical preparations, J. Anal. Chem. 65 (2010) 749-754.[33] H.B. Zhou, J.Y. Wang, B.X. Yea, Electrochemical investigation of redox reactions of herbal drug Shikonin and its determination in pharmaceutical preparations, J. Anal. Chem. 65 (2010) 749-754.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  830
  • HTML全文浏览量:  11
文章相关
  • 发布日期:  2014-11-28
  • 收稿日期:  2014-01-10
  • 网络出版日期:  2014-11-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章