Synthesis and biological evaluation of 5,6,7-trimethoxy- 1- benzylidene-3,4-dihydro-naphthalen-2-one as tubulinpolymerization inhibitors

Jun-Hang Jiang Can-Hui Zheng Chong-Qing Wang Juan Wang Wei Tian Chao Yang Yun-Long Song Yong Hu Ju Zhu You-Yun Zhou

Citation:  Jun-Hang Jiang, Can-Hui Zheng, Chong-Qing Wang, Juan Wang, Wei Tian, Chao Yang, Yun-Long Song, Yong Hu, Ju Zhu, You-Yun Zhou. Synthesis and biological evaluation of 5,6,7-trimethoxy- 1- benzylidene-3,4-dihydro-naphthalen-2-one as tubulinpolymerization inhibitors[J]. Chinese Chemical Letters, 2015, 26(5): 607-609. doi: 10.1016/j.cclet.2015.03.022 shu

Synthesis and biological evaluation of 5,6,7-trimethoxy- 1- benzylidene-3,4-dihydro-naphthalen-2-one as tubulinpolymerization inhibitors

    通讯作者: Yong Hu,
    Ju Zhu,
    You-Yun Zhou,
  • 基金项目:

    Shanghai Natural Science Foundation (No. 09ZR1438800)  (No. 09ZR1438800)

    Shanghai Education Development Foundation (No. 12CG42). (No. 12CG42)

摘要: A series of new combretastatin-A4 analogs were synthesized, in which a six-membered ring connects the linking bridge and A ring, and their tumor cell growth and tubulin-polymerization inhibitory activity were evaluated. These compounds appear to be potential tubulin-polymerization inhibitors. Compounds 1b with amino substituted on position 3 of B ring conferred optimal bioactivity, higher than that of the lead compound 22b and equivalent to that of CA-4. The binding modes of these compounds to tubulin were obtained by molecular docking, which can explain the structure-activity relationship. The studies presented here provide a new structural type for the development of novel antitumor agents.

English

  • 
    1. [1] M.A. Jordan, L. Wilson, Microtubules as a target for anticancer drugs, Nat. Rev. Cancer 4 (2004) 253-265.[1] M.A. Jordan, L. Wilson, Microtubules as a target for anticancer drugs, Nat. Rev. Cancer 4 (2004) 253-265.

    2. [2] C. Dumontet, M.A. Jordan, Microtubule-binding agents: a dynamic field of cancer therapeutics, Nat. Rev. Drug Discov. 9 (2010) 790-803.[2] C. Dumontet, M.A. Jordan, Microtubule-binding agents: a dynamic field of cancer therapeutics, Nat. Rev. Drug Discov. 9 (2010) 790-803.

    3. [3] N.H. Nam, Combretastatin A-4 analogues as antimitotic antitumor agents, Curr. Med. Chem. 10 (2003) 1697-1722.[3] N.H. Nam, Combretastatin A-4 analogues as antimitotic antitumor agents, Curr. Med. Chem. 10 (2003) 1697-1722.

    4. [4] L.H. Shen, H.Y. Li, H.X. Shang, et al., Synthesis and cytotoxic evaluation of new colchicine derivatives bearing 1,3,4-thiadiazole moieties, Chin. Chem. Lett. 24 (2013) 299-302.[4] L.H. Shen, H.Y. Li, H.X. Shang, et al., Synthesis and cytotoxic evaluation of new colchicine derivatives bearing 1,3,4-thiadiazole moieties, Chin. Chem. Lett. 24 (2013) 299-302.

    5. [5] T. Ai, S.Y. Shi, L.T. Chen, et al., Synthesis and anti-tumor activity evaluation of novel podophyllotoxin derivatives, Chin. Chem. Lett. 24 (2013) 37-40.[5] T. Ai, S.Y. Shi, L.T. Chen, et al., Synthesis and anti-tumor activity evaluation of novel podophyllotoxin derivatives, Chin. Chem. Lett. 24 (2013) 37-40.

    6. [6] G.C. Tron, T. Pirali, G. Sorba, et al., Medicinal chemistry of combretastatin A4: present and future directions, J. Med. Chem. 49 (2006) 3033-3044.[6] G.C. Tron, T. Pirali, G. Sorba, et al., Medicinal chemistry of combretastatin A4: present and future directions, J. Med. Chem. 49 (2006) 3033-3044.

    7. [7] Y.S. Shan, J. Zhang, Z. Liu, M. Wang, Y. Dong, Developments of combretastatin A-4 derivatives as anticancer agents, Curr. Med. Chem. 18 (2011) 523-538.[7] Y.S. Shan, J. Zhang, Z. Liu, M. Wang, Y. Dong, Developments of combretastatin A-4 derivatives as anticancer agents, Curr. Med. Chem. 18 (2011) 523-538.

    8. [8] D.W. Siemann, D.J. Chaplin, P.A. Walicke, A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P), Expert Opin. Invest. Drugs 18 (2009) 189-197.[8] D.W. Siemann, D.J. Chaplin, P.A. Walicke, A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P), Expert Opin. Invest. Drugs 18 (2009) 189-197.

    9. [9] S. Zheng, Q. Zhong, M. Mottamal, et al., Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents, J. Med. Chem. 57 (2014) 3369-3381.[9] S. Zheng, Q. Zhong, M. Mottamal, et al., Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents, J. Med. Chem. 57 (2014) 3369-3381.

    10. [10] R. Romagnoli, P.G. Baraldi, C. Lopez-Cara, et al., Concise synthesis and biological evaluation of 2-aroyl-5-amino benzo [b] thiophene derivatives as a novel class of potent antimitotic agents, J. Med. Chem. 56 (2013) 9296-9309.[10] R. Romagnoli, P.G. Baraldi, C. Lopez-Cara, et al., Concise synthesis and biological evaluation of 2-aroyl-5-amino benzo [b] thiophene derivatives as a novel class of potent antimitotic agents, J. Med. Chem. 56 (2013) 9296-9309.

    11. [11] R. Álvarez, P. Puebla, J.F. Díaz, et al., Endowing indole-based tubulin inhibitors with an anchor for derivatization: highly potent 3-substituted indolephenstatins and indoleisocombretastatins, J. Med. Chem. 56 (2013) 2813-2827.[11] R. Álvarez, P. Puebla, J.F. Díaz, et al., Endowing indole-based tubulin inhibitors with an anchor for derivatization: highly potent 3-substituted indolephenstatins and indoleisocombretastatins, J. Med. Chem. 56 (2013) 2813-2827.

    12. [12] H.Y. Lee, J.Y. Chang, C.Y. Nien, et al., 5-Amino-2-aroylquinolines as highly potent tubulin polymerization inhibitors. Part 2. The impact of bridging groups at position C-2, J. Med. Chem. 54 (2011) 8517-8525.[12] H.Y. Lee, J.Y. Chang, C.Y. Nien, et al., 5-Amino-2-aroylquinolines as highly potent tubulin polymerization inhibitors. Part 2. The impact of bridging groups at position C-2, J. Med. Chem. 54 (2011) 8517-8525.

    13. [13] C.H. Zheng, J. Chen, J. Liu, et al., Synthesis and biological evaluation of 1-phenyl- 1,2,3,4-dihydroisoquinoline compounds as tubulin polymerization inhibitors, Arch. Pharm. 345 (2012) 454-462.[13] C.H. Zheng, J. Chen, J. Liu, et al., Synthesis and biological evaluation of 1-phenyl- 1,2,3,4-dihydroisoquinoline compounds as tubulin polymerization inhibitors, Arch. Pharm. 345 (2012) 454-462.

    14. [14] Y.W. Li, J. Liu, N. Liu, et al., Imidazolone-amide bridges and their effects on tubulin polymerization in cis-locked vinylogous combretastatin-A4 analogues: synthesis and biological evaluation, Bioorg. Med. Chem. 19 (2011) 3579-3584.[14] Y.W. Li, J. Liu, N. Liu, et al., Imidazolone-amide bridges and their effects on tubulin polymerization in cis-locked vinylogous combretastatin-A4 analogues: synthesis and biological evaluation, Bioorg. Med. Chem. 19 (2011) 3579-3584.

    15. [15] A. Andreani, S. Burnelli, M. Granaiola, et al., Antitumor activity of substituted E- 3-(3,4,5-trimethoxybenzylidene)-1,3-dihydroindol-2-ones 1, J. Med. Chem. 49 (2006) 6922-6924.[15] A. Andreani, S. Burnelli, M. Granaiola, et al., Antitumor activity of substituted E- 3-(3,4,5-trimethoxybenzylidene)-1,3-dihydroindol-2-ones 1, J. Med. Chem. 49 (2006) 6922-6924.

    16. [16] J.P. Liou, Y.L. Chang, F.M. Kuo, et al., Concise synthesis and structure-activity relationships of combretastatin A-4 analogues, 1-aroylindoles and 3-aroylindoles, as novel classes of potent antitubulin agents, J. Med. Chem. 47 (2004) 4247-4257.[16] J.P. Liou, Y.L. Chang, F.M. Kuo, et al., Concise synthesis and structure-activity relationships of combretastatin A-4 analogues, 1-aroylindoles and 3-aroylindoles, as novel classes of potent antitubulin agents, J. Med. Chem. 47 (2004) 4247-4257.

    17. [17] X. Ren, M. Dai, L.P. Lin, et al., Anti-angiogenic and vascular disrupting effects of C9, a new microtubule-depolymerizing agent, Br. J. Pharmacol. 156 (2009) 1228-1238.[17] X. Ren, M. Dai, L.P. Lin, et al., Anti-angiogenic and vascular disrupting effects of C9, a new microtubule-depolymerizing agent, Br. J. Pharmacol. 156 (2009) 1228-1238.

    18. [18] J. Liu, C.H. Zheng, X.H. Ren, et al., Synthesis and biological evaluation of 1-benzylidene- 3,4-dihydronaphthalen-2-one as a new class of microtubule-targeting agents, J. Med. Chem. 55 (2012) 5720-5733.[18] J. Liu, C.H. Zheng, X.H. Ren, et al., Synthesis and biological evaluation of 1-benzylidene- 3,4-dihydronaphthalen-2-one as a new class of microtubule-targeting agents, J. Med. Chem. 55 (2012) 5720-5733.

    19. [19] GOLD 5.0., Cambridge Crystallographic Data Centre, Cambridge, UK, 2011.[19] GOLD 5.0., Cambridge Crystallographic Data Centre, Cambridge, UK, 2011.

    20. [20] Discovery Studio 3.0, Accelrys, Inc., San Diego, CA, 2013.[20] Discovery Studio 3.0, Accelrys, Inc., San Diego, CA, 2013.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  869
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2015-03-27
  • 收稿日期:  2015-01-18
  • 网络出版日期:  2015-02-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章