Preparation of aromatic nitriles via direct oxidative conversion of benzyl alcohols, aldehydes and amines with pentylpyridinium tribromide in aqueous NH4OAc

Ghodsieh Bagherzade Abbas Zali Arash Shokrolahi

Citation:  Ghodsieh Bagherzade, Abbas Zali, Arash Shokrolahi. Preparation of aromatic nitriles via direct oxidative conversion of benzyl alcohols, aldehydes and amines with pentylpyridinium tribromide in aqueous NH4OAc[J]. Chinese Chemical Letters, 2015, 26(5): 603-606. doi: 10.1016/j.cclet.2015.01.009 shu

Preparation of aromatic nitriles via direct oxidative conversion of benzyl alcohols, aldehydes and amines with pentylpyridinium tribromide in aqueous NH4OAc

    通讯作者: Abbas Zali,
摘要: Pentylpyridinium tribromide and aqueous ammonium acetate was used for the rapid oxidative conversion of benzyl alcohols, benzaldehydes and benzyl amines to the corresponding benzonitriles in good to excellent yields. This simple, mild and one-pot system provides easy workup and separation of the products.

English

    1. [1] J.B. Medwid, R. Paul, J.S. Baker, et al., Preparation of triazolo[1,5-c] pyrimidines as potential antiasthma agents, J. Med. Chem. 33 (1990) 1230-1241.[1] J.B. Medwid, R. Paul, J.S. Baker, et al., Preparation of triazolo[1,5-c] pyrimidines as potential antiasthma agents, J. Med. Chem. 33 (1990) 1230-1241.

    2. [2] B.D. Judkins, D.G. Allen, T.A. Cook, B. Evans, T.E. Sardharwala, A versatile synthesis of amidines from nitriles via amidoximes, Synth. Commun. 26 (1996) 4351-4367.[2] B.D. Judkins, D.G. Allen, T.A. Cook, B. Evans, T.E. Sardharwala, A versatile synthesis of amidines from nitriles via amidoximes, Synth. Commun. 26 (1996) 4351-4367.

    3. [3] D. Sriram, P. Yogeeswari, Medicinal Chemistry, Pearson Education, Mü nchen, 2007p. 35.[3] D. Sriram, P. Yogeeswari, Medicinal Chemistry, Pearson Education, Mü nchen, 2007p. 35.

    4. [4] D.T. Mowry, The preparation of nitriles, Chem. Rev. 42 (1948) 189-283.[4] D.T. Mowry, The preparation of nitriles, Chem. Rev. 42 (1948) 189-283.

    5. [5] K. Friedrich, K. Wallensfels, Introduction of the cyano group into the molecule, in: Z. Rappoport (Ed.), Chemistry of Cyano Group, Wiley-Inter Science, New York, 1970, p. 67.[5] K. Friedrich, K. Wallensfels, Introduction of the cyano group into the molecule, in: Z. Rappoport (Ed.), Chemistry of Cyano Group, Wiley-Inter Science, New York, 1970, p. 67.

    6. [6] M. North, A.R. Katritzky, O. Meth-Conn, C.W. Rees, Comprehensive Organic Functional Group Transformations, Pergamon, Oxford, 1995, pp. 617-618.[6] M. North, A.R. Katritzky, O. Meth-Conn, C.W. Rees, Comprehensive Organic Functional Group Transformations, Pergamon, Oxford, 1995, pp. 617-618.

    7. [7] G.D. Diana, D. Cutcliffe, D.L. Volkots, et al., Antipicornavirus activity of tetrazole analogs related to disoxaril, J. Med. Chem. 36 (1993) 3240-3250.[7] G.D. Diana, D. Cutcliffe, D.L. Volkots, et al., Antipicornavirus activity of tetrazole analogs related to disoxaril, J. Med. Chem. 36 (1993) 3240-3250.

    8. [8] M.E. Fabiani, Angiotensin receptor subtypes: novel targets for cardiovascular therapy, Drug News Perspect. 12 (1999) 207-216.[8] M.E. Fabiani, Angiotensin receptor subtypes: novel targets for cardiovascular therapy, Drug News Perspect. 12 (1999) 207-216.

    9. [9] M. Chihiro, H. Nagamoto, I. Takemura, et al., Novel thiazole derivatives as inhibitors of superoxide production by human neutrophils: synthesis and structure- activity relationships, J. Med. Chem. 38 (1995) 353-358.[9] M. Chihiro, H. Nagamoto, I. Takemura, et al., Novel thiazole derivatives as inhibitors of superoxide production by human neutrophils: synthesis and structure- activity relationships, J. Med. Chem. 38 (1995) 353-358.

    10. [10] I.K. Khanna, R.M. Weier, Y. Yu, et al., 1,2-Diarylimidazoles as potent, cyclooxygenase- 2 selective, and orally active antiinflammatory agents, J. Med. Chem. 40 (1997) 1634-1647.[10] I.K. Khanna, R.M. Weier, Y. Yu, et al., 1,2-Diarylimidazoles as potent, cyclooxygenase- 2 selective, and orally active antiinflammatory agents, J. Med. Chem. 40 (1997) 1634-1647.

    11. [11] J.S. Miller, J.L. Manson, Designer magnets containing cyanides and nitriles, Acc. Chem. Res. 34 (2001) 563-570.[11] J.S. Miller, J.L. Manson, Designer magnets containing cyanides and nitriles, Acc. Chem. Res. 34 (2001) 563-570.

    12. [12] L. Friedman, H. Shechter, Preparation of nitriles from halides and sodium cyanide, an advantageous nucleophilic displacement in dimethyl sulfoxide, J. Org. Chem. 25 (1960) 877-879.[12] L. Friedman, H. Shechter, Preparation of nitriles from halides and sodium cyanide, an advantageous nucleophilic displacement in dimethyl sulfoxide, J. Org. Chem. 25 (1960) 877-879.

    13. [13] I.R. Baxendale, S.V. Ley, F.H. Sneddon, A clean conversion of aldehydes to nitriles using a solid-supported hydrazine, Synlett 5 (2002) 775-777 (references therein).[13] I.R. Baxendale, S.V. Ley, F.H. Sneddon, A clean conversion of aldehydes to nitriles using a solid-supported hydrazine, Synlett 5 (2002) 775-777 (references therein).

    14. [14] T. Mineno, M. Shinada, K. Watanabe, et al., Highly-efficient conversion of primary amides to nitriles using indium(III) triflate as the catalyst, Int. J. Org. Chem. 4 (2014) 1-6.[14] T. Mineno, M. Shinada, K. Watanabe, et al., Highly-efficient conversion of primary amides to nitriles using indium(III) triflate as the catalyst, Int. J. Org. Chem. 4 (2014) 1-6.

    15. [15] G.A. Olah, Y.D. Vankar, Improved one-step conversion of aldehydes into nitriles with hydroxylamine in formic acid solution, Synthesis (1978) 702-703.[15] G.A. Olah, Y.D. Vankar, Improved one-step conversion of aldehydes into nitriles with hydroxylamine in formic acid solution, Synthesis (1978) 702-703.

    16. [16] M.N. Rao, P. Kumar, K. Garyali, A new method for the conversion of aldoximes into nitriles with zeolites, Org. Prep. Proced. Int. 21 (1989) 230-232.[16] M.N. Rao, P. Kumar, K. Garyali, A new method for the conversion of aldoximes into nitriles with zeolites, Org. Prep. Proced. Int. 21 (1989) 230-232.

    17. [17] G.A. Olah, S.C. Narang, A. Garcia-Luma, Sulfuryl chloride fluoride, a mild dehydrating agent in the preparation of nitriles from aldoximes, Synthesis (1980) 659- 660.[17] G.A. Olah, S.C. Narang, A. Garcia-Luma, Sulfuryl chloride fluoride, a mild dehydrating agent in the preparation of nitriles from aldoximes, Synthesis (1980) 659- 660.

    18. [18] J.N. Kim, K.H. Chung, E.K. Ryu, Improved dehydration method of aldoximes to nitriles: use of acetonitrile to triphenylphosphine/carbon tetrachloride system, Synth. Commun. 20 (1990) 2785-2788.[18] J.N. Kim, K.H. Chung, E.K. Ryu, Improved dehydration method of aldoximes to nitriles: use of acetonitrile to triphenylphosphine/carbon tetrachloride system, Synth. Commun. 20 (1990) 2785-2788.

    19. [19] T.A. Khan, S. Pernucheralathan, H. Ila, H. Junjappa, S,S-Dimethyl dithiocarbonate: a useful reagent for efficient conversion of aldoximes to nitriles, Synlett (2004) 2019-2021.[19] T.A. Khan, S. Pernucheralathan, H. Ila, H. Junjappa, S,S-Dimethyl dithiocarbonate: a useful reagent for efficient conversion of aldoximes to nitriles, Synlett (2004) 2019-2021.

    20. [20] M. Hosseini Sarvari, ZnO/CH3COCl: a new and highly efficient catalyst for dehydration of aldoximes into nitriles under solvent-free condition, Synthesis (2005) 787-790.[20] M. Hosseini Sarvari, ZnO/CH3COCl: a new and highly efficient catalyst for dehydration of aldoximes into nitriles under solvent-free condition, Synthesis (2005) 787-790.

    21. [21] S.H. Yang, S. Chang, Highly efficient and catalytic conversion of aldoximes to nitriles, Org. Lett. 3 (2001) 4209-4211.[21] S.H. Yang, S. Chang, Highly efficient and catalytic conversion of aldoximes to nitriles, Org. Lett. 3 (2001) 4209-4211.

    22. [22] K. Tambara, G.D. Pantos, Conversion of aldoximes into nitriles and amides under mild conditions, Org. Biomol. Chem. 11 (2013) 2466-2472.[22] K. Tambara, G.D. Pantos, Conversion of aldoximes into nitriles and amides under mild conditions, Org. Biomol. Chem. 11 (2013) 2466-2472.

    23. [23] Y. Song, S.D. Zhang, Q. Chen, X.G. Xu, Ac2O/K2CO3/DMSO: an efficient and practical reagent system for the synthesis of nitriles from aldoximes, Tetrahedron Lett. 55 (2014) 639-641.[23] Y. Song, S.D. Zhang, Q. Chen, X.G. Xu, Ac2O/K2CO3/DMSO: an efficient and practical reagent system for the synthesis of nitriles from aldoximes, Tetrahedron Lett. 55 (2014) 639-641.

    24. [24] M. Gucma, W.M. Gołębiewski, Convenient conversion of aldoximes into nitriles with N-chlorosuccinimide and pyridine, Synthesis (2008) 1997-1999.[24] M. Gucma, W.M. Gołębiewski, Convenient conversion of aldoximes into nitriles with N-chlorosuccinimide and pyridine, Synthesis (2008) 1997-1999.

    25. [25] R. Rezaei, M. Karami, Microwave promoted rapid dehydration of aldoximes to nitriles using melamine-formaldehyde resin supported sulphuric acid in dry media, Chin. Chem. Lett. 22 (2011) 815-818.[25] R. Rezaei, M. Karami, Microwave promoted rapid dehydration of aldoximes to nitriles using melamine-formaldehyde resin supported sulphuric acid in dry media, Chin. Chem. Lett. 22 (2011) 815-818.

    26. [26] R. Ghorbani-Vaghei, L. Shiri, A. Ghorbani-Choghamarani, An efficient, rapid and facile procedure for conversion of aldoximes to nitriles using triphenylphosphine and N-halo sulfonamides, Chin. Chem. Lett. 24 (2013) 1123-1126.[26] R. Ghorbani-Vaghei, L. Shiri, A. Ghorbani-Choghamarani, An efficient, rapid and facile procedure for conversion of aldoximes to nitriles using triphenylphosphine and N-halo sulfonamides, Chin. Chem. Lett. 24 (2013) 1123-1126.

    27. [27] N. Mori, H. Togo, Direct oxidative conversion of primary alcohols to nitriles using molecular iodine in ammonia water, Synlett (2005) 1456-1458.[27] N. Mori, H. Togo, Direct oxidative conversion of primary alcohols to nitriles using molecular iodine in ammonia water, Synlett (2005) 1456-1458.

    28. [28] L.M. Dornan, Q. Cao, J.C.A. Flanagan, et al., Copper/TEMPO catalysed synthesis of nitriles from aldehydes or alcohols using aqueous ammonia and with air as the oxidant, Chem. Commun. 49 (2013) 6030-6032.[28] L.M. Dornan, Q. Cao, J.C.A. Flanagan, et al., Copper/TEMPO catalysed synthesis of nitriles from aldehydes or alcohols using aqueous ammonia and with air as the oxidant, Chem. Commun. 49 (2013) 6030-6032.

    29. [29] C. Tao, F. Liu, Y. Zhu, W. Liu, Z. Cao, Copper-catalyzed aerobic oxidative synthesis of aryl nitriles from benzylic alcohols and aqueous ammonia, Org. Biomol. Chem. 11 (2013) 3349-3354.[29] C. Tao, F. Liu, Y. Zhu, W. Liu, Z. Cao, Copper-catalyzed aerobic oxidative synthesis of aryl nitriles from benzylic alcohols and aqueous ammonia, Org. Biomol. Chem. 11 (2013) 3349-3354.

    30. [30] A. Ghorbani-Choghamarani, M.A. Zolfigol, M. Hajjami, S. Sardari, Direct synthesis of nitriles from alcohols or aldehydes using H5IO6/KI in aqueous ammonia, Synth. Commun. 43 (2013) 52-58.[30] A. Ghorbani-Choghamarani, M.A. Zolfigol, M. Hajjami, S. Sardari, Direct synthesis of nitriles from alcohols or aldehydes using H5IO6/KI in aqueous ammonia, Synth. Commun. 43 (2013) 52-58.

    31. [31] R. Ghorbani-Vaghei, H. Veisi, Poly(N,N'-dichloro-N-ethylbenzene-1,3-disulfonamide) and N,N,N0,N'-tetrachlorobenzene-1,3-disulfonamide as novel reagents for the synthesis of N-chloroamines, nitriles and aldehydes, Synthesis (2009) 945- 950.[31] R. Ghorbani-Vaghei, H. Veisi, Poly(N,N'-dichloro-N-ethylbenzene-1,3-disulfonamide) and N,N,N0,N'-tetrachlorobenzene-1,3-disulfonamide as novel reagents for the synthesis of N-chloroamines, nitriles and aldehydes, Synthesis (2009) 945- 950.

    32. [32] H. Veisi, R. Ghorbani-Vaghei, Recent progress in the application of N-halo reagents in the synthesis of heterocyclic compounds, Tetrahedron 66 (2010) 7445-7463.[32] H. Veisi, R. Ghorbani-Vaghei, Recent progress in the application of N-halo reagents in the synthesis of heterocyclic compounds, Tetrahedron 66 (2010) 7445-7463.

    33. [33] A. Misono, T. Osa, S. Koda, The synthesis of nitriles from aldehydes, Bull. Chem. Soc. Jpn. 39 (1966) 854-854.[33] A. Misono, T. Osa, S. Koda, The synthesis of nitriles from aldehydes, Bull. Chem. Soc. Jpn. 39 (1966) 854-854.

    34. [34] A. Misono, T. Osa, S. Koda, On the formation of benzonitrile from benzaldehyde and ammonia. II. Iodine as an oxidant, Bull. Chem. Soc. Jpn. 40 (1967) 2875- 2884.[34] A. Misono, T. Osa, S. Koda, On the formation of benzonitrile from benzaldehyde and ammonia. II. Iodine as an oxidant, Bull. Chem. Soc. Jpn. 40 (1967) 2875- 2884.

    35. [35] S. Talukdar, J.L. Hsu, T.C. Chou, J.M. Fang, Direct transformation of aldehydes to nitriles using iodine in ammonia water, Tetrahedron Lett. 42 (2001) 1103-1105.[35] S. Talukdar, J.L. Hsu, T.C. Chou, J.M. Fang, Direct transformation of aldehydes to nitriles using iodine in ammonia water, Tetrahedron Lett. 42 (2001) 1103-1105.

    36. [36] M. Hajjami, A. Ghorbani-Choghamarani, M.A. Zolfigol, F. Gholamian, An efficient and versatile synthesis of aromatic nitriles from aldehydes, Chin. Chem. Lett. 23 (2012) 1323-1326.[36] M. Hajjami, A. Ghorbani-Choghamarani, M.A. Zolfigol, F. Gholamian, An efficient and versatile synthesis of aromatic nitriles from aldehydes, Chin. Chem. Lett. 23 (2012) 1323-1326.

    37. [37] S. Iida, R. Ohmura, H. Togo, Direct oxidative conversion of alkyl halides into nitriles with molecular iodine and 1,3-diiodo-5,5-dimethylhydantoin in aq ammonia, Tetrahedron 65 (2009) 6257-6262.[37] S. Iida, R. Ohmura, H. Togo, Direct oxidative conversion of alkyl halides into nitriles with molecular iodine and 1,3-diiodo-5,5-dimethylhydantoin in aq ammonia, Tetrahedron 65 (2009) 6257-6262.

    38. [38] S. Iida, H. Togo, Direct oxidative conversion of alcohols and amines to nitriles with molecular iodine and DIH in aq NH3, Tetrahedron 63 (2007) 8274-8281.[38] S. Iida, H. Togo, Direct oxidative conversion of alcohols and amines to nitriles with molecular iodine and DIH in aq NH3, Tetrahedron 63 (2007) 8274-8281.

    39. [39] K.R. Reddy, C.U. Maheswari, M. Venkateshwar, S. Prashanthi, M.L. Kantam, Catalytic oxidative conversion of alcohols, aldehydes and amines into nitriles using KI/I2-TBHP system, Tetrahedron Lett. 50 (2009) 2050-2053.[39] K.R. Reddy, C.U. Maheswari, M. Venkateshwar, S. Prashanthi, M.L. Kantam, Catalytic oxidative conversion of alcohols, aldehydes and amines into nitriles using KI/I2-TBHP system, Tetrahedron Lett. 50 (2009) 2050-2053.

    40. [40] H. Veisi, Direct oxidative conversion of alcohols, amines, aldehydes, and benzyl halides into the corresponding nitriles with trichloroisocyanuric acid in aqueous ammonia, Synthesis (2010) 2631-2635.[40] H. Veisi, Direct oxidative conversion of alcohols, amines, aldehydes, and benzyl halides into the corresponding nitriles with trichloroisocyanuric acid in aqueous ammonia, Synthesis (2010) 2631-2635.

    41. [41] K.N.T. Tseng, A.M. Rizzi, N.K. Szymczak, Oxidant-free conversion of primary amines to nitriles, J. Am. Chem. Soc. 135 (2013) 16352-16355.[41] K.N.T. Tseng, A.M. Rizzi, N.K. Szymczak, Oxidant-free conversion of primary amines to nitriles, J. Am. Chem. Soc. 135 (2013) 16352-16355.

    42. [42] J. Kim, S.S. Stahl, Cu nitroxyl-catalyzed aerobic oxidation of primary amines into nitriles at room temperature, ACS Catal. 3 (2013) 1652-1656.[42] J. Kim, S.S. Stahl, Cu nitroxyl-catalyzed aerobic oxidation of primary amines into nitriles at room temperature, ACS Catal. 3 (2013) 1652-1656.

    43. [43] J. He, K. Yamaguchi, N. Mizuno, Aerobic oxidative transformation of primary azides to nitriles by ruthenium hydroxide catalyst, J. Org. Chem. 76 (2011) 4606- 4610.[43] J. He, K. Yamaguchi, N. Mizuno, Aerobic oxidative transformation of primary azides to nitriles by ruthenium hydroxide catalyst, J. Org. Chem. 76 (2011) 4606- 4610.

    44. [44] J.Q. Ye, Z.L. Zhang, Z.G. Zha, Z.Y. Wang, A green and efficient access to aryl nitriles via an electrochemical anodic oxidation, Chin. Chem. Lett. 25 (2014) 1112-1114.[44] J.Q. Ye, Z.L. Zhang, Z.G. Zha, Z.Y. Wang, A green and efficient access to aryl nitriles via an electrochemical anodic oxidation, Chin. Chem. Lett. 25 (2014) 1112-1114.

    45. [45] T. Schareina, R. Jackstell, T. Schulz, et al., Increasing the scope of palladiumcatalyzed cyanations of aryl chlorides, Adv. Synth. Catal. 351 (2009) 643-648.[45] T. Schareina, R. Jackstell, T. Schulz, et al., Increasing the scope of palladiumcatalyzed cyanations of aryl chlorides, Adv. Synth. Catal. 351 (2009) 643-648.

    46. [46] J.L. Zhang, X.R. Chen, T.J. Hu, et al., Highly efficient Pd-catalyzed cyanation of aryl chlorides and arenesulfonates with potassium ferrocyanide in aqueous media, Catal. Lett. 139 (1/2) (2010) 56-60.[46] J.L. Zhang, X.R. Chen, T.J. Hu, et al., Highly efficient Pd-catalyzed cyanation of aryl chlorides and arenesulfonates with potassium ferrocyanide in aqueous media, Catal. Lett. 139 (1/2) (2010) 56-60.

    47. [47] Y. Ren, Z. Liu, S. Zhao, et al., Ethylenediamine/Cu(OAc)2 H2O-catalyzed cyanation of aryl halides with K4[Fe(CN)6], Catal. Commun. 10 (2009) 768-771.[47] Y. Ren, Z. Liu, S. Zhao, et al., Ethylenediamine/Cu(OAc)2 H2O-catalyzed cyanation of aryl halides with K4[Fe(CN)6], Catal. Commun. 10 (2009) 768-771.

    48. [48] Y. Suzuki, K. Moriyama, H. Togo, Facile transformation of esters to nitriles, Tetrahedron 67 (2011) 7956-7962.[48] Y. Suzuki, K. Moriyama, H. Togo, Facile transformation of esters to nitriles, Tetrahedron 67 (2011) 7956-7962.

    49. [49] Y. Suzuki, T. Yoshino, K. Moriyama, H. Togo, Direct transformation of N,Ndisubstituted amides and isopropyl esters to nitriles, Tetrahedron 67 (2011) 3809-3814.[49] Y. Suzuki, T. Yoshino, K. Moriyama, H. Togo, Direct transformation of N,Ndisubstituted amides and isopropyl esters to nitriles, Tetrahedron 67 (2011) 3809-3814.

    50. [50] A. Mekki-Berrada, S. Bennici, J.P. Gillet, et al., Fatty acid methyl esters into nitriles: acid-base properties for enhanced catalysts, J. Catal. 306 (2013) 30-37.[50] A. Mekki-Berrada, S. Bennici, J.P. Gillet, et al., Fatty acid methyl esters into nitriles: acid-base properties for enhanced catalysts, J. Catal. 306 (2013) 30-37.

    51. [51] Z. Shu, Y. Ye, Y. Deng, Y. Zhang, J. Wang, Palladium(II)-catalyzed direct conversion of methyl arenes into aromatic nitriles, Angew. Chem. Int. Ed. 52 (2013) 10573- 10576.[51] Z. Shu, Y. Ye, Y. Deng, Y. Zhang, J. Wang, Palladium(II)-catalyzed direct conversion of methyl arenes into aromatic nitriles, Angew. Chem. Int. Ed. 52 (2013) 10573- 10576.

    52. [52] X. Zong, Q.Z. Zheng, N. Jiao, NBS mediated nitriles synthesis through C5C double bond cleavage, Org. Biomol. Chem. 12 (2014) 1198-1202.[52] X. Zong, Q.Z. Zheng, N. Jiao, NBS mediated nitriles synthesis through C5C double bond cleavage, Org. Biomol. Chem. 12 (2014) 1198-1202.

    53. [53] P.J. Salazar, R. Dorta, Pentylpyridinium tribromide: a vapor pressure free room temperature ionic liquid analogue of bromine, Synlett (2004) 1318-1320.[53] P.J. Salazar, R. Dorta, Pentylpyridinium tribromide: a vapor pressure free room temperature ionic liquid analogue of bromine, Synlett (2004) 1318-1320.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  913
  • HTML全文浏览量:  25
文章相关
  • 发布日期:  2015-01-12
  • 收稿日期:  2014-08-12
  • 网络出版日期:  2014-12-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章