Size dependence of photocatalytic oxidation reactions of Rh nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) support

Yi Zhang D. A. J. Michel Ligthart Peng Liu Lu Gao Tiny M. W. G. M. Verhoeven Emiel J. M. Hensen

引用本文: Yi Zhang, D. A. J. Michel Ligthart, Peng Liu, Lu Gao, Tiny M. W. G. M. Verhoeven, Emiel J. M. Hensen. Size dependence of photocatalytic oxidation reactions of Rh nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) support[J]. 催化学报, 2014, 35(12): 1944-1954. doi: 10.1016/S1872-2067(14)60181-9 shu
Citation:  Yi Zhang, D. A. J. Michel Ligthart, Peng Liu, Lu Gao, Tiny M. W. G. M. Verhoeven, Emiel J. M. Hensen. Size dependence of photocatalytic oxidation reactions of Rh nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) support[J]. Chinese Journal of Catalysis, 2014, 35(12): 1944-1954. doi: 10.1016/S1872-2067(14)60181-9 shu

Size dependence of photocatalytic oxidation reactions of Rh nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) support

    通讯作者: Emiel J. M. Hensen
摘要: Mixed Ga-Zn oxynitrides were synthesized using coprecipitation, wet-precipitation, and solid-solution methods. The oxynitrides were used as supports for Rh nanoparticle catalysts in photocatalytic water splitting, CO oxidation, and H2 oxidation. Mixed Ga-Zn oxynitrides produced by wet precipitation and nitridation had good visible-light-absorption properties and high surface areas, so they were used to support uniformly sized poly(vinylpyrrolidone)-stabilized Rh nanoparticles. The nanoparticle size range was 2-9 nm. These catalysts had negligible activity in photocatalytic H2 production by water splitting with methanol as a sacrificial agent. Other mixed Ga-Zn oxynitrides were also inactive. A reference sample provided by Domen also showed very low activity. The influence of particle size on Rh-catalyzed oxidation of CO and H2 was investigated. For CO oxidation, the activities of small particles were higher for particles with higher Rh oxidation degrees. The opposite holds for H2 oxidation.

English

    1. [1] Maeda K, Takata T, Hara M, Saito N, Inoue Y, Koboyashi H, Domen K. J Am Chem Soc, 2005, 127: 8286[1] Maeda K, Takata T, Hara M, Saito N, Inoue Y, Koboyashi H, Domen K. J Am Chem Soc, 2005, 127: 8286

    2. [2] Maeda K, Teramura K, Takata T, Hara M, Saito N, Toda K, Inoue Y, Kobayashi H, Domen K. J Phys Chem B, 2005, 109: 20504[2] Maeda K, Teramura K, Takata T, Hara M, Saito N, Toda K, Inoue Y, Kobayashi H, Domen K. J Phys Chem B, 2005, 109: 20504

    3. [3] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295[3] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295

    4. [4] Yashima M, Maeda K, Teramura K, Takata T, Domen K. Chem Phys Lett, 2005, 416: 225[4] Yashima M, Maeda K, Teramura K, Takata T, Domen K. Chem Phys Lett, 2005, 416: 225

    5. [5] Yashima M, Maeda K, Teramura K, Takata T, Domen K. Mater Trans, 2006, 47: 295[5] Yashima M, Maeda K, Teramura K, Takata T, Domen K. Mater Trans, 2006, 47: 295

    6. [6] Sun X J, Maeda K, Le Faucheur M, Teramura K, Domen K. Appl Catal A, 2007, 327: 114[6] Sun X J, Maeda K, Le Faucheur M, Teramura K, Domen K. Appl Catal A, 2007, 327: 114

    7. [7] Hirai T, Maeda K, Yoshida M, Kubota J, Ikeda S, Matsumura M, Domen K. J Phys Chem C, 2007, 111: 18853[7] Hirai T, Maeda K, Yoshida M, Kubota J, Ikeda S, Matsumura M, Domen K. J Phys Chem C, 2007, 111: 18853

    8. [8] Maeda K, Teramura K, Domen K. J Catal, 2008, 254: 198[8] Maeda K, Teramura K, Domen K. J Catal, 2008, 254: 198

    9. [9] Hisatomi T, Maeda K, Lu D L, Domen K. ChemSusChem, 2009, 2: 336[9] Hisatomi T, Maeda K, Lu D L, Domen K. ChemSusChem, 2009, 2: 336

    10. [10] Hisatomi T, Miyazaki K, Takanabe K, Maeda K, Kubota J, Sakata Y, Domen K. Chem Phys Lett, 2010, 486: 144[10] Hisatomi T, Miyazaki K, Takanabe K, Maeda K, Kubota J, Sakata Y, Domen K. Chem Phys Lett, 2010, 486: 144

    11. [11] Meada K, Hashiguchi H, Masuda H, Abe R, Domen K. J Phys Chem C, 2008, 112: 3447[11] Meada K, Hashiguchi H, Masuda H, Abe R, Domen K. J Phys Chem C, 2008, 112: 3447

    12. [12] Boppana V B R, Doren D J, Lobo R F. J Mater Chem, 2010, 20: 9787[12] Boppana V B R, Doren D J, Lobo R F. J Mater Chem, 2010, 20: 9787

    13. [13] Zou L, Xiang X, Wei M, Li F, Evans D G. Inorg Chem, 2008, 47: 1361[13] Zou L, Xiang X, Wei M, Li F, Evans D G. Inorg Chem, 2008, 47: 1361

    14. [14] Moriya Y, Takata T, Domen K. Coord Chem Rev, 2013, 257: 1957[14] Moriya Y, Takata T, Domen K. Coord Chem Rev, 2013, 257: 1957

    15. [15] Adeli B, Taghipour F. ECS J Solid State Sci Technol, 2013, 2: Q118[15] Adeli B, Taghipour F. ECS J Solid State Sci Technol, 2013, 2: Q118

    16. [16] Han W Q, Liu Z X, Yu H G. Appl Phys Lett, 2010, 96: 183112[16] Han W Q, Liu Z X, Yu H G. Appl Phys Lett, 2010, 96: 183112

    17. [17] Lee K, Tienes B M, Wilker M B, Schnitzenbaumer K J, Dukovic G. Nano Lett, 2012, 12: 3268[17] Lee K, Tienes B M, Wilker M B, Schnitzenbaumer K J, Dukovic G. Nano Lett, 2012, 12: 3268

    18. [18] Ward M J, Han W Q, Sham T K. J Phys Chem C, 2013, 117: 20332[18] Ward M J, Han W Q, Sham T K. J Phys Chem C, 2013, 117: 20332

    19. [19] Li X H, Shao C L, Wang D, Zhang X, Zhang P, Liu Y C. Ceram Int, 2014, 40: 3425[19] Li X H, Shao C L, Wang D, Zhang X, Zhang P, Liu Y C. Ceram Int, 2014, 40: 3425

    20. [20] Li F, Duan X. Struct Bond, 2006, 119: 193[20] Li F, Duan X. Struct Bond, 2006, 119: 193

    21. [21] Wang J P, Huang B B, Wang Z Y, Wang P, Cheng H F, Zheng Z X, Qin X Y, Zhang X Y, Dai Y, Whangbo M H. J Mater Chem, 2011, 21: 4562[21] Wang J P, Huang B B, Wang Z Y, Wang P, Cheng H F, Zheng Z X, Qin X Y, Zhang X Y, Dai Y, Whangbo M H. J Mater Chem, 2011, 21: 4562

    22. [22] Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S. Chem Mater, 2009, 21: 2973[22] Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S. Chem Mater, 2009, 21: 2973

    23. [23] Maeda K, Sakamoto N, Ikeda T, Ohtsuka H, Xiong A K, Lu D L, Kanehara M, Teranishi T, Domen K. Chem Eur J, 2010, 16: 7750[23] Maeda K, Sakamoto N, Ikeda T, Ohtsuka H, Xiong A K, Lu D L, Kanehara M, Teranishi T, Domen K. Chem Eur J, 2010, 16: 7750

    24. [24] Ikeda T, Xiong A K, Yoshinaga T, Maeda K, Domen K, Teranishi T. J Phys Chem C, 2013, 117: 2467[24] Ikeda T, Xiong A K, Yoshinaga T, Maeda K, Domen K, Teranishi T. J Phys Chem C, 2013, 117: 2467

    25. [25] Ligthart D A J M, van Santen R A, Hensen E J M. Angew Chem Int Ed, 2011, 50: 5306[25] Ligthart D A J M, van Santen R A, Hensen E J M. Angew Chem Int Ed, 2011, 50: 5306

    26. [26] Ligthart D A J M, van Santen R A, Hensen E J M. J Catal, 2011, 280: 206[26] Ligthart D A J M, van Santen R A, Hensen E J M. J Catal, 2011, 280: 206

    27. [27] Zhang Y, Ligthart D A J M, Quek X Y, Gao L, Hensen E J M. Int J Hydrogen Energy, 2014, 39: 11537[27] Zhang Y, Ligthart D A J M, Quek X Y, Gao L, Hensen E J M. Int J Hydrogen Energy, 2014, 39: 11537

    28. [28] Grass M E, Zhang Y W, Butcher D R, Park J Y, Li Y M, Bluhm H, Bratlie K M, Zhang T F, Somorjai G A. Angew Chem Int Ed, 2008, 47: 8893[28] Grass M E, Zhang Y W, Butcher D R, Park J Y, Li Y M, Bluhm H, Bratlie K M, Zhang T F, Somorjai G A. Angew Chem Int Ed, 2008, 47: 8893

    29. [29] Aliaga C, Park J Y, Yamada Y, Lee H S, Tsung C K, Yang P D, Somorjai G A. J Phys Chem C, 2009, 113: 6150[29] Aliaga C, Park J Y, Yamada Y, Lee H S, Tsung C K, Yang P D, Somorjai G A. J Phys Chem C, 2009, 113: 6150

    30. [30] Yoshida M, Takanabe K, Maeda K, Ishikawa A, Kubota J, Sakata Y, Ikezawa Y, Domen K. J Phys Chem C, 2009, 113: 10151[30] Yoshida M, Takanabe K, Maeda K, Ishikawa A, Kubota J, Sakata Y, Ikezawa Y, Domen K. J Phys Chem C, 2009, 113: 10151

    31. [31] Sakamoto N, Ohtsuka H, Ikeda T, Maeda K, Lu D L, Kanehara M, Teramura K, Teranishi T, Domen K. Nanoscale, 2009, 1: 106[31] Sakamoto N, Ohtsuka H, Ikeda T, Maeda K, Lu D L, Kanehara M, Teramura K, Teranishi T, Domen K. Nanoscale, 2009, 1: 106

    32. [32] Maeda K, Teramura K, Lu D L, Saito N, Inoue Y, Domen K. Angew Chem Int Ed, 2006, 45: 7806[32] Maeda K, Teramura K, Lu D L, Saito N, Inoue Y, Domen K. Angew Chem Int Ed, 2006, 45: 7806

    33. [33] Maeda K, Teramura K, Lu D L, Saito N, Inoue Y, Domen K. J Phys Chem C, 2007, 111: 7554[33] Maeda K, Teramura K, Lu D L, Saito N, Inoue Y, Domen K. J Phys Chem C, 2007, 111: 7554

    34. [34] Coey J M D. Acta Crystallogr Sect B, 1970, 26: 1876[34] Coey J M D. Acta Crystallogr Sect B, 1970, 26: 1876

    35. [35] Quek X Y, Guan Y J, Hensen E J M. Catal Today, 2012, 183: 72[35] Quek X Y, Guan Y J, Hensen E J M. Catal Today, 2012, 183: 72

    36. [36] Crespo-Quesada M, Andanson J M, Yarulin A, Lim B, Xia Y N, Kiwi-Minsker L. Langmuir, 2011, 27: 7909[36] Crespo-Quesada M, Andanson J M, Yarulin A, Lim B, Xia Y N, Kiwi-Minsker L. Langmuir, 2011, 27: 7909

    37. [37] Maeda K, Lu D L, Teramura K, Domen K. Energy Environ Sci, 2010, 3: 471[37] Maeda K, Lu D L, Teramura K, Domen K. Energy Environ Sci, 2010, 3: 471

    38. [38] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. J Phys Chem B, 2006, 110: 13753[38] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. J Phys Chem B, 2006, 110: 13753

    39. [39] Kandiel T A, Dillet R, Robben L, Bahnemann D W. Catal Today, 2011, 161: 196[39] Kandiel T A, Dillet R, Robben L, Bahnemann D W. Catal Today, 2011, 161: 196

    40. [40] Li Y X, Lu G X, Li S B. J Photochem Photobiol A, 2002, 152: 219[40] Li Y X, Lu G X, Li S B. J Photochem Photobiol A, 2002, 152: 219

    41. [41] Maeda K. personal communication[41] Maeda K. personal communication

    42. [42] Hahn C, Fardy M A, Nguyen C, Natera-Comte M, Andrews S C, Yang P D. Israel J Chem, 2012, 52: 1111[42] Hahn C, Fardy M A, Nguyen C, Natera-Comte M, Andrews S C, Yang P D. Israel J Chem, 2012, 52: 1111

    43. [43] Busser G W, Mei B, Muhler M. ChemSusChem, 2012, 5: 2200[43] Busser G W, Mei B, Muhler M. ChemSusChem, 2012, 5: 2200

    44. [44] Dionigi F, Vesborg P C K, Pedersen T, Hansen O, Dahl S, Xiong A K, Maeda K, Domen K, Chorkendorff I. J Catal, 2012, 292: 26[44] Dionigi F, Vesborg P C K, Pedersen T, Hansen O, Dahl S, Xiong A K, Maeda K, Domen K, Chorkendorff I. J Catal, 2012, 292: 26

    45. [45] Song W Y, Jansen A P J, Degirmenci V, Ligthart D A J M, Hensen E J M. Chem Commun, 2013, 49: 3851[45] Song W Y, Jansen A P J, Degirmenci V, Ligthart D A J M, Hensen E J M. Chem Commun, 2013, 49: 3851

    46. [46] Grass M E, Joo S H, Zhang Y W, Somorjai G A. J Phys Chem C, 2009, 113: 8616[46] Grass M E, Joo S H, Zhang Y W, Somorjai G A. J Phys Chem C, 2009, 113: 8616

    47. [47] Joo S H, Park J Y, Renzas J R, Butcher D R, Huang W Y, Somorjai G A. Nano Lett, 2010, 10: 2709[47] Joo S H, Park J Y, Renzas J R, Butcher D R, Huang W Y, Somorjai G A. Nano Lett, 2010, 10: 2709

    48. [48] Park J Y, Aliaga C, Renzas J R, Lee H, Somorjai G A. Catal Lett, 2009, 129: 1[48] Park J Y, Aliaga C, Renzas J R, Lee H, Somorjai G A. Catal Lett, 2009, 129: 1

    49. [49] Shimura K, Kawai H, Yoshida T, Yoshida H. Chem Commun, 2011, 47: 8958[49] Shimura K, Kawai H, Yoshida T, Yoshida H. Chem Commun, 2011, 47: 8958

    50. [50] Shimura K, Kawai H, Yoshida T, Yoshida H. ACS Catal, 2012, 2: 2126[50] Shimura K, Kawai H, Yoshida T, Yoshida H. ACS Catal, 2012, 2: 2126

    51. [51] Nilekar A U, Alayoglu S, Eichhorn B, Mavrikakis M. J Am Soc Chem, 2010, 132: 7418[51] Nilekar A U, Alayoglu S, Eichhorn B, Mavrikakis M. J Am Soc Chem, 2010, 132: 7418

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  423
  • HTML全文浏览量:  23
文章相关
  • 收稿日期:  2014-05-15
  • 网络出版日期:  2014-06-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章